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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 LINEAR ALGEBRA 
 

The study of linear algebra includes the topics of vector 

algebra, matrix algebra, and the theory of vector spaces. Linear algebra 

originated as the study of linear equations, including the solution of 

simultaneous linear equations. An equation is linear if no variable in it is 

multiplied by itself or any other variable.  

Two important concepts emerge in linear algebra to help facilitate the 

expression and solution of systems of simultaneous linear equations. 

They are the vector and the matrix. Vectors correspond to directed line 

segments. They have both magnitude (length) and direction. Matrices are 

rectangular arrays of numbers. They are used in dealing with the 

coefficients of simultaneous equations. Using vector and matrix notation, 

a system of linear equations can be written, in the form of a single 

equation, as a matrix times a vector. 

 Linear algebra has a wide variety of applications. It is useful in solving 

network problems, such as calculating current flow in various branches 

of complicated electronic circuits, or analyzing traffic flow patterns on 

city streets and interstate highways. Linear algebra is also the basis of a 

process called linear programming, widely used in business to solve a 

variety of problems that often contain a very large number of variables. 
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UNIT 1: MATRIX REPRESENTATION 

OF LINEAR TRANSFORMATIONS. 
 

STRUCTURE 

1.0 Objective 

1.1 Introduction 

1.2 Matrices 

1.3 Special Matrices 

1.4 Operations On Matrices 

1.5 Multiplication Of Matrices 

1.6 Inverse Of Matrix 

1.7 Some Special Matrix 

1.8 Summary 

1.9 Keywords 

1.10 Questions for review 

1.11 Suggested Readings 

1.12 Answers To Check Your Progress 

1.0 OBJECTIVE 
 

Understand the basic concept of matrices 

Learn different operation on matrices 

Understand how to multiply the matrices 

Understand the inverse and special matrices 
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1.1 INTRODUCTION 
 

The matrix has a long history of application in solving linear equations. 

They were known as arrays until the 1800‘s.  The term ―matrix‖ 

(Latin for ―womb‖, derived from mater—mother) was coined by James 

Joseph Sylvester in 1850, who understood a matrix as an object giving 

rise to a number of determinants today called minors, that is to say, 

determinants of smaller matrices that are derived from the original one 

by removing columns and rows.  An English mathematician named 

Cullis was the first to use modern bracket notation for matrices 

in 1913 and he simultaneously demonstrated the first significant use of 

the notation A=ai , j  to represent a matrix where a i,j  refers to the element 

found in the ith row and the jth column.  Matrices can be used to 

compactly write and work with multiple linear equations, referred to as a 

system of linear equations, simultaneously. Matrices and matrix 

multiplication reveal their essential features when related to linear 

transformations, also known as linear maps. 

1.2 MATRICES 
 

Definition of a Matrix 

Definition 1.1.1. A rectangular array of numbers is called a matrix. The 

horizontal arrays of a matrix are called its rows and the vertical arrays 

are called its columns. Let A be a matrix having m rows and n columns. 

Then, A is said to have order m × n or is called a matrix of size m × n 

and can be represented in either of the following forms: 

 

 

 

where aij is the entry at the intersection of the ith row and jth column. 

One writes            
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to say that A is an m × n matrix with complex entries,            to 

say that A is an m × n 

matrix with real entries and A = [aij], when the order of the matrix is 

understood from the context. We will also use A[i, :] to denote the i-th 

row of A, A[:, j] to denote the j-th column of A and aij or (A)ij, for the (i, 

j)-th entry of A 

For example consider 

 

 

 

 

then A[1, :] = [1 3 + i 7], 

  

 

 

 

 

and a22 = 5. In general, in row vector commas are inserted to differentiate 

between entries. Thus, A[1, :] = [1, 3 + i, 7]. A matrix having only one 

column is called a column vector and a matrix with only one row is 

called a row vector. All our vectors will be column vectors and will be 

represented by bold letters. Thus, A[1, :] is a row vector and A[:, 3] is a 

column vector. 

 

Example: The system of linear equations 2x + 3y = 5 and 3x + 2y = 6 

can be identified with the matrix 

 

 

 

 

Note that x and y are variables with the understanding that x is associated 

with A[:, 1] and y is associated with A[:, 2]. 

 

Definition 1.1.3. Two matrices A = [aij], B = [bij]          ) are said 

to be equal if aij = bij,  for each i = 1, 2, . . . , m and j = 1, 2, . . . , n. In 
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other words, two matrices are said to be equal if they have the same 

order and their corresponding entries are equal. 

 

1.3 SPECIAL MATRICES 
 

Definition 1.2.1.  1. A matrix in which each entry is zero is called a 

zero-matrix, denoted 0.  

For example,  

 

 

 

2. A matrix that has the same number of rows as the number of columns, 

is called a square matrix. A square matrix is said to have order n if it‘s 

order is n × n and is denoted either by writing A           or    

       , depending on whether the entries are real or complex numbers, 

respectively. 

3. Let                      

(a) Then, the entries a11, a22, . . . , ann are called the diagonal entries and 

they constitute the principal diagonal of A. 

 

(b) Then, A is said to be a diagonal matrix if aij = 0 for i ≠ j, denoted 

diag(a11, . . . , ann). 

For example, the zero matrix 0n and *
  
  

+ are two diagonal matrices. 

(c) If A = diag(a11, . . . , ann) and aii = d for all i = 1, . . . , n then the 

diagonal matrix A is called a scalar matrix. 

 

(d) Then, A = diag(1, . . . , 1) is called the identity matrix, denoted In, or 

in short I. 
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For 1 ≤ i ≤ n, define ei = In[:, i], a matrix of order n × 1. Then, the set {e1, 

. . . , en}, 

where               for 1 ≤ i ≤ n, is called the standard basis of  n
. 

Note that even though the order of the column vectors ei‘s depend on n, 

we don‘t mention it as the size is understood from the context. For 

example, if e1    2
 then,   

 = [1, 0]. If e1    3
 then,   

 =  1 = [1, 0, 0] 

and so on. 

 

5. Let A = [aij] be a square matrix. 

(a) Then, A is said to be an upper triangular matrix if aij = 0 for i > j. 

(b) Then, A is said to be a lower triangular matrix if aij = 0 for i < j. 

(c) Then, A is said to be triangular if it is an upper or a lower triangular 

matrix.  

 

6. An m × n matrix A = [aij] is said to have an upper triangular form if 

aij = 0 for all i > j. For example, the matrices have upper triangular 

forms. 

 

1.4 OPERATIONS ON MATRICES 

 

Definition 1.3.1. Let                      
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1. Then, the transpose of A, denoted      [   ]           and bij = 

aji, for all i, j. 

2. Then, the conjugate transpose of A, denoted A∗ 
= [cij]           and 

cij = aji, for all i, j, where for a    , a denotes the complex-conjugate of 

a. 

 

Thus, if x is a column vector then xT and x∗ are row vectors and vice-

versa. For example, if 

 

 

 

 

Note that A∗ ≠ A
T
 . 

 

Theorem 1.3.2. For any matrix A, (A∗)∗ = A. Thus, (A
T
 )

T
 = A. 

 

Proof. Let A = [aij], A∗ = [bij] and (A∗)∗ = [cij]. Clearly, the order of A and 

(A∗)∗ is the same. Also, by definition cij =  ̅  =    ̿̿ ̿̿ = aij for all i, j and 

hence the result follows. 

 

Definition 1.3.3. Let A = [aij], B = [bij]           Mm,n(C). Then, the 

sum of A and B, denoted A + B, is defined to be the matrix C = [cij]   

        with cij = aij + bij. 
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Definition 1.3.4. Let A = [aij]           Then, the product of k   C 

with A, denoted kA,                                                                                                                                                                                                                                                                                                                                  

is defined as kA = [kaij] = [aijk] = Ak.     

 

 

Theorem 1.3.5. Let A, B, C           and let k, l     . Then, 

 

1. A + B = B + A (commutativity). 

 

2. (A + B) + C = A + (B + C) (associativity). 

 

3. k(lA) = (kl)A. 

 

4. (k + l)A = kA + lA. 

 

Proof. Part 1. 

 

Let A = [aij] and B = [bij]. Then, by definition 

A + B = [aij] + [bij] = [aij + bij] = [bij + aij] = [bij] + [aij] = B + A 

 

as complex numbers commute.  

 

Definition 1.2.6. Let A                    

1. Then, the matrix 0m×n is called the additive identity as A + 0 = 0 + A 

= A. 

 

2. Then, there exists a matrix B with A + B = 0. This matrix B is called 

the additive inverse of A, and is denoted by −A = (−1)A. 

 

Check your progress 

1. Define the following 

a. Square matrix 

b. Upper Triangular matrix 

c. Lower Triangular matrix [HINT: Provide the definition with example] 
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2.  Define the product of matrices and state its properties [HINT: Provide 

the definition and statement of its properties] 

 

       

1.5 MULTIPLICATION OF MATRICES 
 

Definition 1.4.1. Let A = [aij]               and B = [bij]          . 

Then, the product of A and B, denoted AB, is a matrix C = [cij]   

         with 

 

For example, 

 

 

(1) 

 

 

 

 

Note that the rows of the matrix AB can be written directly as 

 

(AB)[1, :] = a [α, β, γ, δ] + b [x, y, z, t] + c [u, v, w, s] = aB[1, :] + bB[2, 

:] + cB[3, :] 

(AB)[2, :] = dB[1, :] + eB[2, :] + fB[3, :]     

 (2) 

 

and similarly, the columns of the matrix AB can be written directly as 
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(AB)[:, 2] = β A[:, 1] + y A[:, 2] + v A[:, 3], · · · , (AB)[:, 4] = δ A[:, 1] 

+ t A[:, 2] + s A[:, 3]. 

 

Remark 1.4.2. Observe the following: 

 

1. In this example, while AB is defined, the product BA is not defined. 

However, for square 

matrices A and B of the same order, both the product AB and BA are 

defined. 

 

2. The product AB corresponds to operating (adding or subtracting 

multiples of different rows) on the rows of the matrix B(see Equation 

(1.2.2)). This is row method for calculating the matrix product. 

 

3. The product AB also corresponds to operating (adding or subtracting 

multiples of different 

columns) on the columns of the matrix A (see Equation (1.2.3)). This is 

column method for calculating the matrix product. 

 

4. Let A and B be two matrices such that the product AB is defined. 

Then, verify that  

(a) Then, verify that (AB)[i, :] = A[i, :]B. That is, the i-th row of AB is 

obtained by multiplying the i-th row of A with B. 

(b) Then, verify that (AB)[:, j] = AB[:, j]. That is, the j-th column of AB 

is obtained 

by multiplying A with the j-th column of B. 

Hence, 

 

Example:  Let 

 



Notes 

15 

 

 

 

 

Use the row/column method of matrix multiplication to 

 

1. find the second row of the matrix AB. 

Solution: By Remark 1.4.2.4, (AB)[2, :] = A[2, :]B and hence 

(AB)[2, :] = 1 · [1, 0, −1] + 0 · [0, 0, 1] + 1 · [0, −1, 1] = [1, −1, 0]. 

 

2. find the third column of the matrix AB. 

Solution: Again, by Remark 1.2.9.4, (AB)[:, 3] = A B[:, 3] and hence 

 

 

 

 

Definition 1.4.3. Two square matrices A and B are said to commute if 

AB = BA. 

 

Remark 1.4.4. Note that if A is a square matrix of order n and if B is a 

scalar matrix of order n then AB = BA. In general, the matrix product is 

not commutative. For example, consider A = *
  
  

+and B = 

*
  
  

+Then, verify that AB = *
  
  

+ ≠  *
  
  

+ = BA. 

 

Theorem 1.4.5. Suppose that the matrices A, B and C are so chosen that 

the matrix multiplications are defined. 

 

1. Then, (AB)C = A(BC). That is, the matrix multiplication is 

associative. 

2. For any k    , (kA)B = k(AB) = A(kB). 

3. Then, A(B + C) = AB + AC. That is, multiplication distributes over 

addition. 

4. If A      ( ) then AIn = InA = A. 
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Proof. Part 1. Let A = [aij]          ), B = [bij]          ) and C = 

[cij]          . Then, 

 

 

Therefore, 

 

Using a similar argument, the next part follows. 

 

1.6 INVERSE OF A MATRIX 
 

Definition 1.5.1. Let A      ( ) 

1. Then, a square matrix B is said to be a left inverse of A, if BA = In. 

2. Then, a square matrix C is called a right inverse of A, if AC = In. 

3. Then, A is said to be invertible (or is said to have an inverse) if there 

exists a matrix 

B such that AB = BA = In. 

 

Lemma 1.5.2. Let A      ( )If that there exist B, C      ( )such that 

AB = In and CA = I 

n then B = C. 

 

Proof. Note that C = CIn = C(AB) = (CA)B = InB = B. 

 

Remark 1.5.3. Lemma 1.5.2. implies that whenever A is invertible, the 

inverse is unique. 

Thus, we denote the inverse of A by A
−1

. That is,  

   AA
−1

 = A
−1

 A = I. 
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Example: Prove that the matrices 

 

 

Solution: Suppose there exists C such that CA = AC = I. Then, using 

matrix product 

 

A[1, :]C = (AC)  [1, :] = I[1, :] = [1, 0, 0]  and A[2, :]C = 

(AC)[2, :] = I[2, :] = [0, 1, 0]. 

 

But A[1, :] = A[2, :] and thus [1, 0, 0] = [0, 1, 0], a contradiction. 

Similarly, if there exists D such that BD = DB = I then 

 

DB[:, 1] = (DB)[:, 1] = I[:, 1],  DB[:, 2] = (DB)[:, 2] = I[:, 2]  

 and DB[:, 3] = I[:, 3]. 

 

But B[:, 3] = B[:, 1] + B[:, 2] and hence I[:, 3] = I[:, 1] + I[:, 2], a 

contradiction. 

 

Theorem 1.5.4. Let A and B be two invertible matrices. Then, 

1. (A
−1

)
−1

 = A. 

2. (AB)
−1

 = B
−1

 A
−1

. 

3. (A∗ 
)
−1

 = (A
−1

)∗. 

 

Proof.   

 

Part 1. Let B = A−1 be the inverse of A. Then, AB = BA = I. Thus, by 

definition, 

B is invertible and B−1 = A. Or equivalently, (A
−1

)
−1

 = A. 

 

Part 2. By associativity (AB)(B
−1

 A
−1

) = A(BB
−1

)A
−1

 = I = (B
−1

 

A
−1

)(AB). 
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Part 3 As AA
−1 

= A
−1

 A = I, we get (AA
−1

)∗
 
= (A

−1
 A)∗

 
= I∗. Or 

equivalently, 

(A
−1

)∗. A∗ 
= A∗ 

(A
−1

)∗ = I. Thus, by definition (A∗)
−1 

= (A
−1

)∗. 

 

1.7 SOME MORE SPECIAL MATRICES 

 

Definition 1.6.1. 1. For 1 ≤ k ≤ m and 1 ≤ l ≤ n, define a matrix k`       

( ) by (   )ij = ( 1 0,, if ( otherwise k,l) = (i, j). Then, the matrices  

 

    

 

are called the standard basis elements for      ( ) 

 

So, if            ( ) then 

 

and 

 

 

 

 

 

1.6.2  Let A        ( ) 

(a) Then, A is called symmetric if A
T 

= A. For example, 
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(b) Then, A is called skew-symmetric if A
T 

= −A. For example, 

 

 

 

(c) Then, A is called orthogonal if AA
T
 = A

T
 A = I. For example, 

 

 

 

 

 

(d) Let A      ( ). Then, A is said to be a permutation matrix if A has 

exactly one non-zero entry, namely 1, in each row and column. For 

example, In, for each positive integer n 

 

 

are permutation matrices. 

 

Let A        ( ). 

(a) Then, A is called normal if  ∗    ∗  For example,   *
  
  

+ is 

a normal matrix 

 

(b) Then, A is called Hermitian if A∗ = A. For example,  

 

 

 

 

(b) Then, A is called Hermitian if A∗ = A. For example, 
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(c) Then, A is called skew-Hermitian if A∗ = −A. For example, 

 

 

 

 

(d) Then, A is called unitary if AA∗ = A∗A = I. For example, 

 

 

 

 

4. Then, A is called idempotent if A
2 
= A. For example, is idempotent. 

 

 

 

5. A vector u        ( ).such that u∗u = 1 is called a unit vector. 

6. A matrix that is symmetric and idempotent is called a projection 

matrix. For example, let u        ( ).be a unit vector. Then, A = uu
T
 is 

a symmetric and an idempotent matrix. Hence, A is a projection matrix. 

In particular, let     
 

√ 
       and A = uu

T
 .Then, u

T
u = 1 and for any 

vector x = [x1, x2]
T
        ( ) note that 

 

 

Thus, Ax is the foot of the perpendicular from the point x on the vector [1 

2]
T 

. 

 

7. Fix a unit vector a        ( ) and let A = 2aa
T
 − In. Then, verify that 

A      ( ) and Ay = 2(a
T
y)a − y, for all y    n

. This matrix is called 

the reflection matrix about the line containing the points 0 and a. 

 

8. Let A      ( ) Then, A is said to be nilpotent if there exists a 

positive integer n such that An = 0. The least positive integer k for which 
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Ak = 0 is called the order of nilpotency. For example, if A = [aij]      

( ) with aij equal to 1 if i − j = 1 and 0, otherwise then An = 0 and A` ≠ 0 

for 1 ≤ l ≤ n − 1. 

Check your progress 

3. Explain inverse of a matrix [HINT: Provide definition and example] 

 

 

4.  Define skew symmetric and permutation matrix[HINT: Provide the 

definition and example] 

 

 

1.8 SUMMARY 
 

We learnt different types of matrices and how different operations on 

Matrices are performed. Specially product and inverse of matrices. We 

also learnt product of two matrices. Even though it seemed complicated, 

it basically tells that multiplying by a matrix on the 

1. left to a matrix A is same as operating on the rows of A. 

2. right to a matrix A is same as operating on the columns of A. 

1. 9 KEYWORDS 
      

1. Vector- a quantity having direction as well as magnitude, especially 

as determining the position of one point in space relative to another. 

2. Perpendicular- Perpendicular means "at right angles". A line 

meeting another at a right angle, or 90° is said to be perpendicular to it 

3. Non-zero entry - A quantity which does not equal zero is said to 

be nonzero. A real nonzero number must be either positive or negative, 

and a complex nonzero number can have either real or imaginary 

part nonzero 

4. Invertible: A function ƒ that has an inverse is called invertible;                                   
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1.10 QUESTION FOR REVIEW 
                                                                                  

1. Suppose A = [aij] and B are matrices such that A+B = 0. Then, show 

that B = (−1)A = [−aij]. 

2.  Let A be a square matrix satisfying A
3
 + A − 2I = 0. Prove that A – 1 

= ½ (A
2
 + I)                                                                                                            

3. Let A be an upper triangular matrix. If  ∗       ∗ then prove that A 

is a diagonal matrix. The same holds for lower triangular matrix. 

4. Let A, B   Mm,n(C). If Ax = Bx, for all x   Mn,1(C) then prove that 

A = B. 

5. Find 2 × 2 nonzero matrices A, B and C satisfying AB = AC but B ≠ 

C. That is, thecancelation law doesn‘t hold. 

1.11 SUGGESTED READINGS 
 

1. K. Hauffman and R. Kunz, Linear Algebra, Pearson Education 

(INDIA), 2003. 

2. G. Strang, Linear Algebra And Its Applications, 4th Edition, 

Brooks/Cole, 2006. 

3.S. Lang, Linear Algebra, Springer, 1989. 

4.David S. Dummit and Richard M. Foote, Abstract Algebra (3e), John 

Wiley and Sons. 

5.R. Gallian Joseph, Contemporary Abstract Algebra, Narosa Publishing 

House. 

6.Thomas Hungerford, Algebra, Springer GTM. 

7.I.N. Herstein, Topics in Abstract Algebra, Wiley Eastern Limited.  

8.D.S. Malik, J.M. Mordesen, M.K. Sen, Fundamentals of Abstract 

Algebra, The McGraw-Hill Companies, Inc. 

1.12 ANSWER TO CHECK YOUR 

PROGRESS 
 

1.Provide the definition with example --1.2.1 – 2 & 5 
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2.Provide the definition--1.3.4 and state the properties and their proof 

from theorem- 1.3.5  

3.Provide the explanation, lemma and remark with example – 1.5.1, 

1.5.2 & 1.5.3 

4.Provide definition and example 1.6.2 – (b) and (d) 
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UNIT 2: SYSTEM OF LINEAR 

EQUATIONS 
 

STRUCTURE 

2.0 Objective 

2.1 Introduction 

2.2 Linear Equations 

2.3 Elementary Row Operations 

2.4 Elementary Matrices And The Row-Reduced Echelon Form 

2.5 Row-Reduced Echelon Form (Rref) 

2.6 Summary 

2.7 Keywords 

2.8 Questions for review 

2.9 Suggested Readings 

2.10 Answers To Check Your Progress 

2.0 OBJECTIVE 
 

Learn the concept of linear equations and their representation using 

matrix form 

Understand the elementary row operation 

Comprehend the concept of Elementary Matrices and the Row-Reduced 

Echelon Form & Row-Reduced Echelon Form (RREF) 

2.1 INTRODUCTION 
 

Systems of linear equations arose in Europe with the introduction in 

1637 by René Descartes of coordinates in geometry. In fact, in this new 

geometry, now called Cartesian geometry, lines and planes are 
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represented by linear equations, and computing their intersections 

amounts to solving systems of linear equations. 

2.2 LINEAR EQUATIONS 
 

Example Let us look at some examples of linear systems. 

1. Suppose a, b   R. Consider the system ax = b in the variable x. If 

(a) a ≠ 0 then the system has a unique solution x = a b. 

(b) a = 0 and 

  i. b ≠ 0 then the system has no solution. 

  ii. b = 0 then the system has infinite number of solutions, namely 

all x   R. 

 

2. Consider a linear system with 2 equations in 2 variables. The equation 

ax + by = c in the 

variables x and y represents a line in R2 if either a ≠ 0 or b ≠ 0. Thus the 

solution set of the system 

    a1x + b1y = c1, a2x + b2y = c2 

 

is given by the points of intersection of the two lines (see Figure 2.1 for 

illustration of different cases) 

 

Figure 2.1: Examples in 2 dimension. 

 

(a) Unique Solution: 

x − y = 3 and 2x + 3y = 11. The unique solution is [x, y]
T
 = [4, 1]

T
. 

Observe that in this case, a1b2 − a2b1 ≠ 0. 

 

(b) Infinite Number of Solutions: 
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x + 2y = 1 and 2x + 4y = 2. As both equations represent the same line, the 

solution set is [x, y]
T
 = [1 − 2y, y]

T
 = [1, 0]

T
 + y[−2, 1]

T
 with y arbitrary. 

Observe that 

 

i. a1b2 − a2b1 = 0, a1c2 − a2c1 = 0 and b1c2 − b2c1 = 0. 

ii. the vector [1, 0]
T
 corresponds to the solution x = 1, y = 0 of the given 

system. 

iii. the vector [−2, 1]
T
 corresponds to the solution x = −2, y = 1 of the 

system 

x + 2y = 0, 2x + 4y = 0. 

 

(c) No Solution 

x + 2y = 1 and 2x + 4y = 3. The equations represent a pair of parallel 

lines and hence there is no point of intersection. Observe that in this case, 

a1b2 − a2b1 = 0 but a1c2 − a2c1 ≠0. 

 

3. As a last example, consider 3 equations in 3 variables. 

A linear equation ax + by + cz = d represents a plane in R3 provided [a, 

b, c] ≠ [0, 0, 0]. Here, we have to look at the points of intersection of the 

three given planes. It turns out that there are seven different ways in 

which the three planes can intersect. We present only three ways which 

correspond to different cases. 

 

(a) Unique Solution 

Consider the system  x + y + z = 3,  x+4y+2z = 7 and 4x+10y−z = 13. The 

unique solution to this system is [x, y, z]T = [1, 1, 1]T , i.e., the three 

planes intersect at a point. 

 

(b) Infinite Number of Solutions 

Consider the system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 11. 

The solution set is [x, y, z]T = [1, 2 − z, z]T = [1, 2, 0]T + z[0, −1, 1]T , 

with z arbitrary. 

 

Observe the following: 

i. Here, the three planes intersect in a line. 
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ii. The vector [1, 2, 0]T corresponds to the solution x = 1, y = 2 and z = 0 

of the linear system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 11. 

Also, the vector [0, −1, 1]T corresponds to the solution x = 0, y = −1 and 

z = 1 of the linear system x + y + z = 0, x + 2y + 2z = 0 and 3x + 4y + 4z = 

0. 

(c) No Solution 

The system x + y + z = 3, 2x + 2y + 2z = 5 and 3x + 3y + 3z = 3 has no 

solution. In this case, we have three parallel planes. The readers are 

advised to supply the proof. 

Before we start with the general set up for the linear system of equations, 

we give different 

interpretations of the examples considered above. 

 

Example 1. Recall above Example a, where we have verified that the 

solution of the linear system x − y = 3 and 2x + 3y = 11 equals [4, 1]T . 

Now, observe the following: 

 

(a) The solution [4, 1]T corresponds to the point of intersection of the 

corresponding two 

lines. 

 

(b) Using matrix multiplication the linear system equals Ax = b, where 

  *
   
  

+ ,   *
 
 + and   *

 
  

+. So, the solution is  

 

 

 

 

(c) Re-writing  

 

 

 

gives us 4 · (1, 2) + 1 · (−1, 3) = (3, 11). 

This corresponds to addition of vectors in the Euclidean plane. 

 

2. Recall Example 3.3a, where the point of intersection of the three 
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planes is the point (1, 1, 1) in the Euclidean space. Note that in matrix 

notation, the system reduces to Ax = b, where] 

 

 

 

 

Then 

 

(b) 1 · (1, 1, 4) + 1 · (1, 4, 10) + 1 · (1, 2, −1) = (3, 5, 13). This 

corresponds to addition of vectors in the Euclidean space. 

 

Thus, there are three ways of looking at the linear system Ax = b, where, 

as the name suggests, 

one of the ways is looking at the point of intersection of planes, the other 

is the vector sum approach and the third is the matrix multiplication 

approach. All of three approaches are important as they give different 

insight to the study of matrices.  

 

Definition 2.1.1 [Linear System] A system of m linear equations in n 

variables x1, x2, . . . , xn 

is a set of equations of the form 

 

 

 

 

 

 

where for 1 ≤ i ≤ m and 1 ≤ j ≤ n; aij, bi   R. Linear System (1) is called 

homogeneous 

if b1 = 0 = b2 = · · · = bm and non-homogeneous, otherwise. 

 

Definition 2.1.2. [Coefficient and Augmented Matrices] Let 
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(1) 

 

Then, (1) can be re-written as Ax = b. In this setup, the matrix A is called 

the coefficient matrix and the block matrix [A b] is called the 

augmented matrix of the linear system (1). 

 

Remark 2.1.3. Consider the linear system Ax = b, where A            

b           and x           .If [A b] is the augmented matrix and x
T
 

= [x1, . . . , xn] then,1. for j = 1, 2, . . . , n, the variable xj corresponds to 

the column ([A b])[:, j]. 

 

2. the vector b = ([A b])[:, n + 1]. 

 

3. for i = 1, 2, . . . , m, the ith equation corresponds to the row ([A 

b])[i,:]. 

 

Definition 2.1.4. [Solution of a Linear System] A solution of Ax = b is 

a vector y such that Ay indeed equals b. The set of all solutions is called 

the solution set of the system. For example, the solution set of Ax = b, 

with 

 

 

 

 

Definition 2.1.5. [Consistent, Inconsistent] Consider a linear system Ax 

= b. Then, this linear system is called consistent if it admits a solution 

and is called inconsistent if it admits no solution. For example, the 

homogeneous system Ax = 0 is always consistent as 0 is a solution 

whereas, verify that the system x + y = 2, 2x + 2y = 3 is inconsistent. 
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Definition 2.1.6. [Associated Homogeneous System] Consider a linear 

system Ax = b. Then, the corresponding linear system Ax = 0 is called 

the associated homogeneous system. 0 is always a solution of the 

associated homogeneous system. 

 

Theorem 2.1.7. Consider a homogeneous linear system Ax = 0. 

1. Then, x = 0, the zero vector, is always a solution, called the trivial 

solution. 

2. Let u ≠ 0 be a solution of Ax = 0. Then, y = cu is also a solution, for 

all c   C. 

A nonzero solution is called a non-trivial solution. Note that, in this 

case, the system Ax = 0 has an infinite number of solutions. 

 

3. Let u1. . . uk be solutions of Ax = 0. Then, ∑     
 
    is also a solution 

of Ax = 0, for 

each choice of ai   C, 1 ≤ i ≤ k. 

 

Remark 2.1.8. 1. Let A = [1 1 1 1]. Then, x = [− 11] is a non-trivial 

solution of Ax = 0. 

2. Let u ≠ v be solutions of a non-homogeneous system Ax = b. Then, xh 

= u – v is a solution of the associated homogeneous system Ax = 0. That 

is, any two distinct solutions of Ax = b differ by a solution of the 

associated homogeneous system Ax = 0. Or equivalently, the solution set 

of Ax = b is of the form, {x0 + xh}, where x0 is a particular solution of Ax 

= b and xh is a solution of the associated homogeneous system Ax = 0. 

2.3 ELEMENTARY ROW OPERATIONS 
 

Example 2.2.1. Solve the linear system y + z = 2, 2x + 3z = 5, x + y + z 

= 3. 

Solution: Let B0 = [A b], the augmented matrix. Then systematically 

proceed to get the solution. 
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1. Interchange 1-st and 2-nd equations (interchange B0[1, :] and B0[2, :] 

to get B1). 

 

 

 

 

 

2. In the new system, multiply 1-st equation by ½ (multiply B1[1, :] by 

1/2 to get B2). 

 

 

3. In the new system, replace 3-rd equation by 3-rd equation minus 1-st 

equation (replace B2[3, :] by B2[3, :] − B2[1, :] to get B3) 

 

 

 

 

 

4. In the new system, replace 3-rd equation by 3-rd equation minus 2-nd 

equation (replace B3[3, :] by B3[3, :] − B3[2, :] to get B4). 

 

5. In the new system, multiply 3-rd equation by −2/3 (multiply B4[3, :] 

by −2/3 to get B5). 
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. 

 

The last equation gives z = 1. Using this, the second equation gives y = 

1. Finally, the first equation gives x = 1. Hence, the solution set is {[x, y, 

z]T | [x, y, z] = [1, 1, 1]}, a unique solution. In Example 2.2.1, observe 

how each operation on the linear system corresponds to a similar 

operation on the rows of the augmented matrix. We use this idea to 

define elementary row operations and the equivalence of two linear 

systems. 

 

Definition 2.2.2. [Elementary Row Operations] Let A            

Then, the elementary row operations are 

 

1. Eij: Interchange the i-th and j-th rows, namely, interchange A[i, :] and 

A[j, :]. 

2. Ek(c) for c ≠ 0: Multiply the k-th row by c, namely, multiply A[k, :] by 

c. 

3. Eij(c) for c  ≠ 0: Replace the i-th row by i-th row plus c-times the j-th 

row, namely, replace A[i, :] by A[i, :] + cA[j, :]. 

 

Definition 2.2.3. [Row Equivalent Matrices] Two matrices are said to 

be row equivalent if one can be obtained from the other by a finite 

number of elementary row operations. 

 

Definition 2.2.4. [Row Equivalent Linear Systems] The linear systems 

Ax = b and Cx = d are said to be row equivalent if their respective 

augmented matrices, [A b] and [C d], are row equivalent. 

Thus, note that the linear systems at each step in Example 2.2.1 are row 

equivalent to each other. We now prove that the solution set of two row 

equivalent linear systems are same. 

 

Lemma 2.2.5. Let Cx = d be the linear system obtained from Ax = b by 
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application of a single elementary row operation. Then, Ax = b and Cx = 

d have the same solution set. 

 

Proof. We prove the result for the elementary row operation Ejk(c) with c  

≠ 0.  

In this case, the systems Ax = b and Cx = d vary only in the j
th

 equation. 

So, we need to show that y satisfies the jth equation of Ax = b if and only 

if y satisfies the j
th

 equation of Cx = d. So, let y
T
 = [α1, . . . , αn]. Then, 

the j
th

 and k
th

 equations of Ax = b are 

   aj1α1 + · · · + ajnαn = bj and ak1α1 + · · · + aknαn = bk.  

Therefore, we see that αi‘s satisfy 

(aj1 + cak1)α1 + · · · + (ajn + cakn)αn = bj + cbk.     (1) 

 

Also, by definition the jth equation of Cx = d equals 

(aj1 + cak1)x1 + · · · + (ajn + cakn)xn = bj + cbk     (2) 

Therefore, using Equation (1), we see that y
T
 = [α1, . . . , αn] is also a 

solution for Equation 

(2). Now, use a similar argument to show that if z
T
 = [β1, . . . , βn] is a 

solution of Cx = d 

then it is also a solution of Ax = b. Hence, the required result follows. 

 

Theorem 2.2.6: Let Ax = b and Cx = d be two row equivalent linear 

systems. Then, they have the same solution set. 

 

Check you progress 

1.  Explain Elementary row operations 

 

 

2.  Define Coefficient and Augmented matrices  
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2. 4 ELEMENTARY MATRICES AND THE 

ROW-REDUCED ECHELON FORM 

(RREF) 
 

Definition 2.3.1. [Elementary Matrix] A matrix           is called 

an elementary matrix if it is obtained by applying exactly one 

elementary row operation to the identity matrix In. 

 

Remark 2.3.2. The elementary matrices are of three types and they 

correspond to elementary row operations. 

 

1. Eij: Matrix obtained by applying elementary row operation Eij to In. 

2. Ek(c) for c ≠ 0: Matrix obtained by applying elementary row operation 

Ek(c) to In. 

3. Eij(c) for c ≠ 0: Matrix obtained by applying elementary row operation 

Eij(c) to In. 

When an elementary matrix is multiplied on the left of a matrix A, it 

gives the same result as that of applying the corresponding elementary 

row operation on A. 

When an elementary matrix is multiplied on the left of a matrix A, it 

gives the same result as that of applying the corresponding elementary 

row operation on A. 

 

Remark 2.3.3. Observe that 

 

1. (Eij)
−1

 = Eij as EijEij = I = EijEij. 

2. Let c ≠ 0. Then, (Ek(c))
−1

 = Ek(1/c) as Ek(c)Ek(1/c) = I = Ek(1/c)Ek(c). 

3. Let c ≠ 0. Then, (Eij(c))
−1

 = Eij(−c) as Eij(c)Eij(−c) = I = Eij(−c)Eij(c). 

 

Thus, each elementary matrix is invertible. Also, the inverse is an 

elementary matrix of the same type. 

 

Proposition 2.3.4. Let A and B be two row equivalent matrices. Then, 

prove that B = E1 · · · EkA, for some elementary matrices E1, . . . , Ek. 
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Proof. By definition of row equivalence, the matrix B can be obtained 

from A by a finite number of elementary row operations. But by Remark 

2.3.2, each elementary row operation on A corresponds to left 

multiplication by an elementary matrix to A. Thus, the required result 

follows. 

 

Theorem 2.3.5. Let Ax = b and Cx = d be two row equivalent linear 

systems. Then, they have the same solution set. 

 

Proof. Let E1, . . . , Ek be the elementary matrices such that E1 · · · Ek[A 

b] = [C d]. Put 

E = E1 · · · Ek. Then, by Remark 2.3.3 

 

   EA = C, Eb = d, A = E−1C and b = E−1d   . (1) 

Now assume that Ay = b holds. Then, by Equation (1) 

    Cy = EAy = Eb = d.     (2) 

On the other hand if Cz = d holds then using Equation (1), we have 

     Az = E−1Cz = E−1d = b. (2.2.3) 

Therefore, using Equations (2) and (3) the required result follows. 

The following result is a particular case of Theorem 2.3.5 

 

Corollary 2.3.6. Let A and B be two row equivalent matrices. Then, the 

systems Ax = 0 and 

Bx = 0 have the same solution set 

 

Example. Are the matrices row equivalent? 
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Solution: No, as [
 
 

  
] is a solution of Bx = 0 but it isn‘t a solution of Ax 

= 0. 

 

Definition 2.3.7. [Pivot/Leading Entry] Let A be a nonzero matrix. 

Then, in each nonzero 

row of A, the left most nonzero entry is called a pivot/leading entry. The 

column containing 

the pivot is called a pivotal column. If aij is a pivot then we denote it by              

For example, 

the entries a12 and a23 are pivots in 

 

 

 

 

 

Thus, columns 2 and 3 are pivotal columns. 

 

Definition 2.3.8. [Row Echelon Form] A matrix is in row echelon 

form (REF) (ladder like) 

1. if the zero rows are at the bottom; 

2. if the pivot of the (i + 1)-th row, if it exists, comes to the right of the 

pivot of the i-th row. 

3. if the entries below the pivot in a pivotal column are 0. 

 

Example. The following matrices are in echelon form 

 

2.5 ROW-REDUCED ECHELON FORM 

(RREF)] 
 

aij 
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Definition 2.4.1. [Row-Reduced Echelon Form (RREF)] A matrix C is 

said to be in row-reduced echelon form (RREF) 

 

1. if C is already in echelon form, 

2. if the pivot of each nonzero row is 1, 

3. if every other entry in each pivotal column is zero. 

A matrix in RREF is also called a row-reduced echelon matrix. 

 

Example  The following matrices are in RREF. 

 

 

Let                

 

2.4.2 Gauss-Jordan Elimination 

 

We now present an algorithm, commonly known as the Gauss-Jordan 

Elimination (GJE), to compute the RREF of A. 

 

1. Input: A. 

2. Output: a matrix B in RREF such that A is row equivalent to B. 

3. Step 1: Put ‗Region‘ = A. 

4. Step 2: If all entries in the Region are 0, STOP. Else, in the Region, 

find the left most 

nonzero column and find its topmost nonzero entry. Suppose this 

nonzero entry is aij = c (say). Box it. This is a pivot. 

5. Step 3: Interchange the row containing the pivot with the top row of 

the region. Also, 

make the pivot entry 1 by dividing this top row by c. Use this pivot to 

make other entries 

in the pivotal column as 0. 

6. Step 4: Put Region = the submatrix below and to the right of the 
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current pivot. Now, 

go to step 2. 

Important: The process will stop, as we can get at most min{m, n} 

pivots. 

 

Example. Apply GJE to 

 

 

 

 

 

1. Region = A as A ≠ 0 

2. Then  

 

 

 

Also, 

 

 

 

3. Now   
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Then, 

 

4. Now, Then 

 

 

 

Now, multiply on the left  by E13(5/2) and E23(-2/7) to get   

 

 

 

 

 

 

 

Proposition 2.4.3. Let           Then, A is invertible if and only if 

RREF(A) = In. That is, every invertible matrix is a product of elementary 

matrices. 

 

Proof. If RREF(A) = In then In = E1 · · · EkA, for some elementary 

matrices E1, . . . , Ek. As Ei‘s are invertible,    
   = E2 · · · EkA,   

      
   

= E3 · · · EkA and so on. Finally, one obtains A =   
   · · ·   

  . A similar 
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calculation now gives AE1 · · · Ek = In. Hence, by definition of 

invertibility A
−1

 = E1 · · · Ek. 

 

Now, let A be invertible with B = RREF(A) = E1 · · · EkA, for some 

elementary matrices E1, . . . , Ek. As A and Ei‘s are invertible, the matrix 

B is invertible. Hence, B doesn‘t have any zero row. Thus, all the n rows 

of B have pivots. Therefore, B has n pivotal columns. As B has exactly n 

columns, each column is a pivotal column and hence B = In. Thus, the 

required result follows. 

As a direct application of Proposition 2.4.3  one obtains the following. 

 

Theorem 2.4.5. Let               Then, for any invertible matrix S, 

RREF(SA) = RREF(A). 

 

Proposition 2.4.6. Let A   Mn( ) be an invertible matrix. Then, for any 

matrix B, define C =      and D = *
 
 
+ . Then, RREF(C) = 

         and RREF(D) = *
  
 

+.  

 

Proof. Using matrix product, A
−1

 C =                    .  

 

As           is in RREF, RREF(C) =          . For the second 

part, note that the matrix    [
    

       
] is an invertible matrix. 

Thus, by Proposition 2.4.3, X is a product of elementary matrices. Now, 

verify that XD = *
  
 

+. As *
  
 

+ is in RREF. Let            Suppose we 

start with C = [A In] and compute RREF(C). If RREF(C) = [G H] then, 

either G = In or G ≠ In. Thus, if G = In then we must have F = A
−1

. If G ≠ 

In  then, A is not invertible.  

 

Example Use GJE to find the inverse of 
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Solution : Applying GJE to 

 

 

 

 

 

Thus, 

 

Check your progress 

3. Define Row Echelon Form and Row Reduced Echelon Form  

 

 

4.  Explain Gauss – Jordan Elimination algorithm  
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2.6 SUMMARY 
 

we started with a system of m linear equations in n variables and 

formally wrote it as Ax = b and in turn to the augmented matrix [A | b]. 

Then, the basic operations on equations led to multiplication by 

elementary matrices on the right of [A | b]. These elementary matrices 

are invertible and applying the GJE on a matrix A, resulted in getting the 

RREF of A. 

2.7 KEYWORDS 
 

1. Distinct Solution - A distinct real solution is a solution to an 

equation that occurs once, and differs in value from other solutions. 

2. Non-Trivial Solution - The system of equation in which the 

determinant of the coefficient is zero is called non-trivial solution. 

3. Solution Set - In mathematics, a solution set is the set of values that 

satisfy a given set of equations or inequalities. 

4. Intersection -  Intersection of two given sets is the largest set which 

contains all the elements that are common to both the sets or The point 

where two lines meet or cross 

5. Verify - to establish the truth, accuracy, or reality of. 

2.8 QUESTIONS FOR REVIEW 

1. Which of the following matrices are elementary? 

2. Find the inverse of the following matrices using GJE. 

 

 

 



Notes 

43 

2.9 SUGGESTED READINGS 
 

1. K. Hauffman and R. Kunz, Linear Algebra, Pearson Education 

(INDIA), 2003. 

2.  G. Strang, Linear Algebra And Its Applications, 4th Edition, 

Brooks/Cole, 2006. 

3. S. Lang, Linear Algebra, Springer, 1989. 

4. David S. Dummit and Richard M. Foote, Abstract Algebra (3e), John 

Wiley and Sons. 

5. R. Gallian Joseph, Contemporary Abstract Algebra, Narosa 

Publishing House. 

6. Thomas Hungerford, Algebra, Springer GTM. 

7. I.N. Herstein, Topics in Abstract Algebra, Wiley Eastern Limited.  

8. D.S. Malik, J.M. Mordesen, M.K. Sen, Fundamentals of Abstract 

Algebra, The McGraw-Hill Companies, Inc. 

  

2.10 ANSWER TO CHECK YOUR 

PROGRESS 

 

1. [HINT: Provide the steps -2.2.2] 

2. [HINT: Provide definition with example –2.1.2] 

3. [HINT: Provide definition with example—2.3.8 & 2.4.1] 

4. [HINT: Provide the steps of algorithm—2.4.2] 
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UNIT-3 SOLUTION SET OF LINEAR 

EQUATION 
 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.2 Rank of a Matrix 

3.3 Solution Set of Linear System 

3.4 Square Matrices and Linear System 

3.5 Summary 

3.6 Keywords 

3.7 Questions for review 

3.8 Suggested Readings 

3.9 Answers to Check your Progress 

3.0 OBJECTIVE 
 

Understand the concept of Rank of Matrix 

Comprehend the Solution Set of Linear System 

Understand the relationship between Square Matrices and Linear System 

3.1 INTRODUCTION 
 

A concept closely connected with the concept of a basis. Usually rank is 

defined either as the minimal cardinality of a generating set (in this way, 

for example, one introduces the basis rank of an algebraic system), or as 

the maximal cardinality of a subsystem of elements which are 

independent in a certain sense. 
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The rank of a system of a vectors in a vector space over a skew-field is 

the maximal number of linearly independent vectors in this system 

(see Linear independence). The rank, or dimension, of a vector space, in 

particular, is equal to the number of elements in a basis of this space (the 

rank does not depend on the choice of the basics: all bases have the same 

cardinality). 

The rank of a matrix is defined as the rank of the system of vectors 

forming its rows (row rank) or of the system of columns (column rank). 

For matrices over a commutative ring with a unit these two concepts of 

rank coincide. For a matrix over a field the rank is also equal to the 

maximal order of a non-zero minor. The rank of a product of matrices is 

not greater than the rank of each of the factors. The rank of a matrix does 

not change under multiplication by a non-singular matrix. 

3.2 RANK OF A MATRIX 
 

Definition 3.1.1 [Rank of a Matrix] Let              Then, the rank 

of A, denoted Rank(A), is the number of pivots in the RREF(A).  

For example, Rank (In) = n and Rank (0) = 0. 

 

Remark 3.1.2 before proceeding further, for           , we observe 

the following. 

 

1. The number of pivots in the RREF (A) is same as the number of pivots 

in REF of A. Hence, we need not compute the RREF (A) to determine 

the rank of A. 

 

2. Since, the number of pivots cannot be more than the number of rows 

or the number of columns, one has Rank(A) ≤ min{m, n}. 

3. If B = *
  
  

+ Then Rank(B) = Rank(A) as RREF(B) =  

*
        

  
+ 
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4. If A = [
      

      
] then, by definition 

 

                                        

(a)                         

 

(b)                         

 

(c)               ([
   

   
]) 

Lemma 3.1.2. Let              If S is an invertible matrix then 

Rank(SA) = Rank(A). 

 

Proof. By Theorem 2.2.22, RREF(A) = RREF(SA). Hence, Rank(SA) = 

Rank(A). 

 

We now have the following result. 

 

Corollary 3.1.3. Let              and             Then, Rank(AB) 

≤ Rank(A). In particular, if           is invertible then Rank(AB) = 

Rank(A). 

 

Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and 

             such that PA = RREF(A) = *
  

 
+. Then, PAB = *

  

 
+. B = 

*
   
 

+. So, using Lemma 3.1.2 and Remark 3.1.2.2, we get  

 

Rank(AB) = Rank(PAB) = Rank(*
   
 

+)  = Rank(A1B) ≤ r = Rank(A).

  (A) 

 In particular,  if B is invertible then, using Equation (A), we get] 

     

   Rank(A) = Rank(ABB
−1

) ≤ Rank(AB)  

 

and hence the required result follows. 
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Theorem 3.1.4 Let             If Rank (A) = r then, there exist 

invertible matrices P and Q such that 

 

 

 

 

Proof. Let C = RREF(A). Then, by Remark 2.2.19.4 there exists as 

invertible matrix P such that C = PA. Note that C has r pivots and they 

appear in columns, say i1 < i2 < · · · < ir.. Now, let D = CE1i1E2i2 · · · Erir. 

As Ejij ‗s are elementary matrices that interchange the columns of C, one 

has 

 

 

 

where B             

Put Q1 = E1i1E2i2 · · · Erir. Then, Q1 is invertible. Let  

 

 

 

 

Then, verify that Q2 is invertible and 

 

Thus, if we put Q = Q1Q2 then Q is invertible and PAQ = CQ = CQ1Q2 = 

*
   
  

+ and hence, the required result follows. 

. 

Proposition 3.1.5 . Let A         be an invertible matrix. 

1. If A = [A1 A2] with A1           and A2   Mn,n−r(C) then Rank(A1) 

= r and 

Rank(A2) = n − r. 
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2. If A = [
  

  
] with B1   Ms,n(C) and B2             then Rank(B1) = s 

and Rank(B2) = 

n − s. In particular, if B = A[S, :] and C = A[:, T ], for some subsets S, T 

of [n] then Rank(B) = |S| 

and Rank(C) = |T |. 

 

Proof. Since A is invertible, RREF(A) = In. Hence, by Remark 2.2.19.4, 

there exists an 

invertible matrix P such that PA = I 

n. Thus, 

 

Thus, PA1 = *
  
 
+ and PA2 = [

 
    

] So, using Corollary 3.1.3, Rank(A1) = 

r. Also, note 

that [
     

   
] is an invertible matrix and 

 

So, again by using Corollary 3.1.3,, Rank(A2) = n − r, completing the 

proof of the first part. 

For the second part, let us assume that Rank(B1) = t < s. There exists an 

invertible matrix Q such that 

 

 

 

for some matrix C, where C is in RREF and has exactly t pivots. Since t 

< s, QB1 has at least 

one zero row. As PA = In, one has AP = In. Hence 
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Further, using Equations (A) and (B), we see that 

 

 

 

 

Thus, Q has a zero row, contradicting the assumption that Q is invertible. 

Hence, Rank(B1) = s. 

Similarly, Rank(B2) = n − s and thus, the required result follows. 

 

Corollary .3.1.6. Let A   Mm,n( ). If Rank(A) = r < n then, there exists 

an invertible matrix Q and B   Mm, r( ) such that AQ = [B 0], where 

Rank(B) = r. 

 

Proof. By Theorem 3.1.4, there exist invertible matrices P and Q such 

that PAQ = *
   
  

+. If P-1
 = hB Ci, where B   Mm,r( ) and C   M 

m,m−r( ) then, 

 

 

 

 

Now, by Proposition 3.1.5, Rank(B) = r = Rank(A) as the matrix P 
−1

 = 

[B C] is an invertible matrix. Thus, the required result follows. 

As an application of Corollary 3.1.6, we have the following result. 

Corollary 3.1.7 Let A   Mm,n(C) and B   Mn,p(C). Then, Rank(AB) ≤ 

Rank(B). 

 

Proof.  Let Rank(B) = r.  

Then, by Corollary 3.1.6, there exists an invertible matrix Q and a matrix 

C   Mn,r( ) such that BQ = [C 0] and Rank(C) = r.  

Hence, ABQ = [AC    0] = [AC    0].  
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Thus, using Corollary 3.1.3 and Remark, we get 

Rank (AB)  =  Rank(ABQ) = Rank [AC   0] = Rank(AC) ≤ r = Rank(B). 

 

Proposition 3.1.8.   Let A, B   Mm,n(C). Then, prove that Rank(A + B) ≤ 

Rank(A) + Rank(B). In particular, if A =  ∑     
∗ 

    for some xi, yi   C, 

for 1 ≤ i ≤ k, then Rank(A) ≤ k. 

 

Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and a 

matrix A1   Mr,n( ) such that PA = RREF(A) =  *
  

 
+. Then,  

 

Now using Corollary 3.1.3 and the condition Rank(A) = Rank(A1) = r, 

the number of rows of A1, we have 

 

Rank(A + B) = Rank(P (A + B)) ≤ r + Rank(B2) ≤ r + Rank(B) = Rank(A) 

+ Rank(B). 

 

Thus, the required result follows. The other part follows, as Rank(    
∗) = 

1, for 1 ≤ i ≤ k. 

 

3.3 SOLUTION SET OF A LINEAR 

SYSTEM 
 

 

Definition 3.2.1 [Basic, Free Variables] Consider the linear system Ax 

= b. If RREF([A b]) = 

[C d]. Then, the variables corresponding to the pivotal columns of C are 

called the basic variables and the variables that are not basic are called 

free variables. 

 

Example:  1. If the system Ax = b in n variables is consistent and 
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RREF(A) has r 

nonzero rows then, Ax = b has r basic variables and n − r free variables. 

 

2. Let 

 

 

Hence, x and y are basic variables and z is the free variable. Thus, the 

solution set of Ax = b is given by 

 

{[x, y, z]
T
 | [x, y, z] = [1, 2 − z, z] = [1, 2, 0] + z[0, −1, 1], with z 

arbitrary}. 

 

3. Let 

 

 

 

Then, the system Ax = b has no solution as (RREF([A b]))[3, :] = [0 0 0 

1]. 

 

Example: Consider a linear system Ax = b. Suppose RREF([A b]) = [C 

d], where 
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Then to get the solution set, we observe the following. 

1. C has 4 pivotal columns, namely, the columns 1, 2, 5 and 6. Thus, x1, 

x2, x5 and x6 are basic variables. 

2. Hence, the remaining variables, x3, x4 and x7 are free variables. 

Therefore, the solution set is given by 

 

 

where x3, x4 and x7 are arbitrary. 

 

In this example, verify that 

 

Cx0 = d, and for 1 ≤ i ≤ 3, Cui = 0. Hence, it follows that Ax0 = d, and for 

1 ≤ i ≤ 3,Aui = 0. 

 

Theorem 3.2.2: Let Ax = b be a linear system in n variables with 

RREF([A b]) = [C d] 

with Rank(A) = r and Rank([A b]) = ra. 

 

1. Then, the system Ax = b is inconsistent if r < ra 

 

2. Then, the system Ax = b is consistent if r = ra. 
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(a) Further, Ax = b has a unique solution if r = n. 

 

(b) Further, Ax = b has infinite number of solutions if r < n. In this case, 

there exist vectors x0, u1, . . . , un−r   Rn with Ax0 = b and Aui = 0, for 1 ≤ 

i ≤ n − r. Furthermore, the solution set is given by 

{x0 + k1u1 + k2u2 + · · · + kn−r un−r | ki   C, 1 ≤ i ≤ n − r}. 

 

Proof. Part 1: As r < ra, ([C d])[r + 1, :] = [0
T
 1]. Note that this row 

corresponds to the linear equation 

    0 · x1 + 0 · x2 + · · · + 0 · xn = 1 

 

which clearly has no solution. Thus, by definition and Theorem 2.1.17, 

Ax = b is inconsistent. 

 

Part 2: As r = ra, [C d] doesn‘t have a row of the form [0
T
 1]. Further, the 

number of pivots in [C d] and that in C is same, namely, r pivots. 

Suppose the pivots appear in columns i1, . . . , ir with 1 ≤ i1 < · · · < ir ≤ n. 

Thus, the variables xij, for 1 ≤ j ≤ r, are basic variables and the remaining 

n − r variables, say    , . . . ,      
, are free variables with t1 < · · · < tn−r. 

Since C is in RREF, in terms of the free variables and basic variables, the 

l-th row of [C d], for 1 ≤ l ≤ r, corresponds to the equation 

 

 

 

 

Thus, the system Cx = d is consistent. Hence, the system Ax = b is 

consistent and the solution set of the system Ax = b and Cx = d are the 

same. Therefore, the solution set of the system Cx = d (or equivalently 

Ax = b) is given by 
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(A) 

 

 

 

Part 2a: As r = n, there are no free variables. Hence, xi = di, for 1 ≤ i ≤ n, 

is the unique solution 

 

Part 2b: Define  

 

 

Then, it can be easily verified that Ax0 = b and, for 1 ≤ i ≤ n−r, Aui = 0. 

Also, by Equation (A) the solution set has indeed the required form, 

where ki corresponds to the free variable xti. As there is at least 

one free variable the system has infinite number of solutions. Thus, the 

proof of the theorem is complete. 

 

Corollary 3.2.3. Let A   Mm,n( ). If Rank(A) = r < min{m, n} then Ax = 

0 has infinitely many solutions. In particular, if m < n, then Ax = 0 has 

infinitely many solutions. Hence, in either case, the homogeneous system 

Ax = 0 has at least one non-trivial solution. 

 

Remark 3.2.4. Let A   M m,n( ). Then, Theorem 3.2.2 implies that Ax = 

b is consistent if and only if Rank(A) = Rank([A b]). Further, the vectors 

associated to the free variables in Equation (A) are solutions to the 

associated homogeneous system Ax = 0. 
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Example.1 Determine the equation of the line/circle that passes through 

the points (−1, 4), (0, 1) and (1, 4). 

 

Solution: The general equation of a line/circle in Euclidean plane is 

given by a(x
2 

+y
2
) + bx + cy + d = 0, where a, b, c and d are variables. 

Since this curve passes through the given points, we get a homogeneous 

system in 3 equations and 4 variables, namely 

 

 

 

 

 

 

Solving this system, we get 

 

 

Hence, choosing d = 13, the required circle is given by 3(x
2
 + y

2
) − 16y + 

13 = 0. 

 

2. Determine the equation of the plane that contains the points (1, 1, 1), 

(1, 3, 2) and (2, −1, 2). 

Solution: The general equation of a plane in space is given by ax + by + 

cz + d = 0, where a, b, c and d are variables. Since this plane passes 

through the 3 given points, we get a homogeneous system in 3 equations 

and 4 variables. So, it has a non-trivial solution, namely 

 

 

 

Hence, choosing d = 3, the required plane is given by −4x − y + 2z + 3 = 

0. 

3. Let  
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Then, find a non-trivial solution of Ax = 2x. Does there exist a nonzero 

vector y   R
3
 such that Ay = 4y? 

 

Solution: Solving for Ax = 2x is equivalent to solving (A − 2I)x = 0. The 

augmented matrix of this system equals  

 

 

 

 

Verify that x
T
 = [1, 0, 0] is a non-zero solution. For the other part, the 

augmented matrix for solving (A − 4I)y = 0 equals 

 

 

  

 

Thus, verify that y
T 

= [2, 0, 1] is a nonzero solution. 

 

3.4 SQUARE MATRICES AND LINEAR 

SYSTEMS 
 

In this section the coefficient matrix of the linear system Ax = b will be a 

square matrix.  

 

Theorem 3.3.1. Let A   Mn( ). Then, the following statements are 

equivalent. 

 

1. A is invertible. 

 

2. RREF(A) = In. 

 

3. A is a product of elementary matrices. 

 

4. The homogeneous system Ax = 0 has only the trivial solution. 

 

5. Rank(A) = n. 



Notes 

57 

 

Proof. 1 ⇔ 2 Already done in Proposition 2.4.3.  

 

2 ⇔ 3 Again, done in Proposition 2.4.3. 

 

3 ⇒ 4   Let A = E1 · · · Ek, for some elementary matrices E1, . . . , 

Ek. Then, by previous equivalence A is invertible. So, A
−1

 exists and A
−1

 

A = In. Hence, if x0 is any solution of the homogeneous system Ax = 0 

then, x0 = In · x0 = (A
−1

 A)x0 = A
−1

(Ax0) = A
−1 

0 = 0. 

Thus, 0 is the only solution of the homogeneous system Ax = 0. 

 

4 ⇒ 5  Let if possible Rank(A) = r < n. Then, by Corollary 3.2.3, the 

homogeneous system Ax = 0 has infinitely many solution. A 

contradiction. Thus, A has full rank. 

 

5 ⇒ 2   Suppose Rank(A) = n. So, RREF(A) has n pivotal 

columns. But, RREF(A) has exactly n columns and hence each column is 

a pivotal column. Thus, RREF(A) = In. 

We end this section by giving two more equivalent conditions for a 

matrix to be invertible. 

 

Theorem 3.3.2. The following statements are equivalent for A   Mn( ). 

1. A is invertible. 

2. The system Ax = b has a unique solution for every b. 

3. The system Ax = b is consistent for every b. 

 

Proof. 1 ⇒ 2 Note that x0 = A
−1

 b is the unique solution of Ax = b. 

2 ⇒ 3 The system is consistent as Ax = b has a solution. 

3 ⇒ 1 For 1 ≤ i ≤ n, define   
  = In[i, :]. By assumption, the linear system 

Ax = ei has a solution, say xi, for 1 ≤ i ≤ n. Define a matrix B = [x1, . . . , 

xn]. Then, 

 AB = A[x1, x2 . . . , xn] = [Ax1, Ax2 . . . , Axn] = [e1, e2 . . . , en] = In. 

 

Therefore, n = Rank(In) = Rank(AB)  ≤  Rank(A) and hence Rank(A) = 

n. Thus, by Theorem 3.3.1, A is invertible. 
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Theorem 3.3.3. The following two statements cannot hold together for A 

  Mn( ). 

1. The system Ax = b has a unique solution for every b. 

2. The system Ax = 0 has a non-trivial solution. 

 

Corollary 3.3.4. Let A   Mn( ). Then, the following holds. 

1. Suppose there exists C such that CA = In. Then, A
−1

 exists. 

2. Suppose there exists B such that AB = In. Then, A
−1

 exists. 

 

Check your progress 

1.  Explain Rank of a Matrix with example  

 

 

2.  Define basic and free variable  

 

 

3. The following statements are equivalent for A   Mn( ). 

1. A is invertible. 

2. The system Ax = b has a unique solution for every b. 

3. The system Ax = b is consistent for every b. 

 

 

 

3.5 SUMMARY 
 

Useful application of calculating the rank of a matrix is the 

computation of the number of solutions of a system of linear equations. 
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3.6 KEYWORDS 
 

1. Statement - a mathematical statement is a sentence which is either 

true or false 

2. Consistent - In mathematics and in particularly in algebra, a linear or 

nonlinear system of equations is called as consistent if there is at least 

one set of values for the unknowns that satisfies each equation in the 

system—that is, that when substituted into each of the equations makes 

each equation hold true as an identity. 

3. Homogeneous system - A linear system of equations Ax = b is 

called homogeneous if b = 0, and non-homogeneous if b = 0. Notice 

that x = 0 is always solution of the homogeneous equation. 

4. In linear algebra, an augmented matrix is a matrix obtained by 

appending the columns of two given matrices, usually for the purpose of 

performing the same elementary row operations on each of the 

given matrices. 

3.7 QUESTION FOR REVIEW 
 

1. Let P and Q be invertible matrices. Then, prove that Rank(PAQ) = 

Rank(A). 

2. Prove that if Rank(A) = Rank(AB) then A = ABX, for some matrix X. 

Similarly, if Rank(A) = Rank(BA) then A = Y BA, for some matrix Y . 

3. Let u = (1, 1, −2)
T 

and v = (−1, 2, 3)T . Find condition on x, y and z 

such that the systemcu + dv = (x, y, z)T in the variables c and d is 

consistent. 

4.. Find the condition(s) on x, y, z so that the systems given below (in the 

variables a, b and 

c) is consistent? 

(a) a + 2b − 3c = x, 2a + 6b − 11c = y, a − 2b + 7c = z. 
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5. Let A and B be two matrices having positive entries and of orders 1 × 

n and n × 1, respectively. Which of BA or AB is invertible? Give 

reasons. 

3.8  SUGGESTED READINGS 
1. K. Hauffman and R. Kunz, Linear Algebra, Pearson Education 

(INDIA), 2003. 

2.  G. Strang, Linear Algebra And Its Applications, 4th Edition, 

Brooks/Cole, 2006. 

3. S. Lang, Linear Algebra, Springer, 1989. 

4. David S. Dummit and Richard M. Foote, Abstract Algebra (3e), John 

Wiley and Sons. 

5. R. Gallian Joseph, Contemporary Abstract Algebra, Narosa Publishing 

House. 

6. Thomas Hungerford, Algebra, Springer GTM. 

7. I.N. Herstein, Topics in Abstract Algebra, Wiley Eastern Limited.  

D.S. Malik, J.M. Mordesen, M.K. Sen, Fundamentals of Abstract 

Algebra, The  McGraw-Hill Companies, Inc 

 

3.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. [HINT : Provide definition and example 3.1.1] 

2. [HINT: Provide definition -3.2.1 ] 

3. Provide the proof of the theorem 3.3.2 
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UNIT-4 LINEAR TRANSFORMATION 

AND DETERMINANT 
 

STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.2 Formation Of Determinant 

4.3 Determinant Of Third Order 

4.4 Properties Of Determinant 

4.5 Cramer‘s Rule 

4.6 Inverse Of Matrix Using Determinant 

4.7 Summary 

4.8 Keywords 

4.9 Questions for review 

4.10 Suggested Readings 

4.11 Answers To Check Your Progress 

4.0 OBJECTIVE 
 

Understand the concept of determinants and its application in Linear 

Transformation 

Understand Cramer‘s Rule 

4.1 INTRODUCTION 
 

In linear algebra, the determinant is a scalar value that can be computed 

from the elements of a square matrix and encodes certain properties of 

the linear transformation described by the matrix.  Geometrically, it can 
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be viewed as the volume scaling factor of the linear transformation 

described by the matrix. This is also the signed volume of the n-

dimensional parallelepiped spanned by the column or row vectors of the 

matrix. 

It can be computed from the entries of the matrix by a specific arithmetic 

expression. The determinant provides important information about a 

matrix of coefficients of a system of linear equations, or about a matrix 

that corresponds to a linear transformation of a vector space.  

The determinant of a matrix A is denoted by det(A), det A, or |A|. The 

determinant is denoted by surrounding the matrix entries by vertical bars. 

Example: 

|
  
  

| OR det *
  
  

+ 

 

4.2 FORMATION OF DETERMINANTS: 
 

Let us consider the following equations: 

                 … (1) 

                 … (2) 

 

Multiply equation (1) by b2 and equation (2) by b1 we get 

                      …(3) 

                      …(4) 

 

Now, subtracting (4) from (3) we get 

⇒                            …(A) 

 

Similarly, multiply equation (1) by a1 and equation (2) by a2 we get the 

following equations 

                      …(5) 

                      …(6) 

 

Now, subtracting (5) from (6) we get 

⇒                            …(B) 

 

http://en.wikipedia.org/wiki/Coefficient
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Linear_transformation
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If              , then from equation (A) and (B) we can write 

   
           

          
 

 And   

   
          

          
 

Now, we can write the common denominator of x and y i.e.       

     as|
    

    
| and it is called as a determinant of second order.  

The value of this determinant is            

|
    

    
| 

Here blue colour arrow           indicates +ve direction and red colour 

arrow          indicates –ve direction. When we multiply in the direction of 

blue arrow we take product as positive while in the direction of red 

colour we consider the product as negative. 

Hence, we get             

Here                  are known as the elements of the determinant. 

 

Example:|
  
  

| =         = 10 – 4 = 6 

|
  

    
| =               =       =  – 10  

 

We can represent the elements in a row of determinat between round 

brackets ( ) and elements in a column of determinant between square 

bracket[ ]. 

 

Consider |
    

    
| 

We can represent the elements in a row as (      ) and (      ) 

respectively. 

We can represent the elements in a column as [     ] and [     ] 

respectively. 
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4.3 DETERMINANT OF A THIRD ORDER:  
 

 Let us consider the three set of linear equations as: 

                      … (1) 

                      … (2) 

                    … (3) 

 

If we solve simultaneously the above three equations, we will get a 

common denominator of the value x, y and z as: 

                                                

 

We can represent the above equation in the following manner: 

|
      

      

      

| 

It is known as a determinant of third order. 

 

It is evaluated as   |
    

    
|    |

    

    
|    |

    

    
| 

 

4.3.1Rule for Evaluating the Third order 

Determinant: 
 

We will consider the example: 

|
    

    
    

| =  |
  

   
|   |

   
  

|   |
   
   

| 

 

1.Write the elements from the first row with alternate positive and 

negative sign, the first element with positive sign, second with negative 

and third is positive 

2.Then we will consider a determinant of second order which we 

obtained after omitting the corresponding row and column related to the 

elements of 1
st
 row. 

Like, if we consider    element i.e. 1 in the above example, we will 

omit all the first row and first column and would be left with a 
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determinant of four elements i.e.                   which are 2, – 1 , 4 

and 5 in the above example. 

 

Similarly, when we consider element    we will omit 2
nd

 row and 2
nd

 

column and for    omit 3
rd

 row and 3
rd

 column. 

 

Let‘s solve the above example. 

=                                          

     

=                          

=                     

=         

=   

 

[NOTE: In case of a determinant Number of rows = Number of columns 

always] 

 

A determinant of n
th

order contains n
2
 elements arranged in n rows and 

n columns illustrated below: 

 

|

          

   
 

   
 

    
 

          

| 

We can represent the elements of the determinant in generalized form as 

aijwhere indicates the row and j indicates the column position. [i = 1, 2, 

3,…,n and j = 1,2, 3, …, n]. 

 

Notation: A determinant is denoted by  . A second order determinant 

may be denoted by    and third order by   . 

 

Example: 

1. Find the value of the following determinants by expanding them. 

 

a. |
  
   

| 
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Solution:  |
  
   

| = 

=              

=       

=     

b. |

    
    

    
| 

Solution: |

    
    

    
| = 

=  |
   
  

|      |
   

   
|   |

  
   

| 

=   ( —   )                   

=           

= 0. 

Check Your Progress 

1.  Explain formation of determinant 

 

 

2 Explain Rule for Evaluating the Third order Determinant 

 

 

 

4.4 PROPERTIES OF A DETERMINANT: 
 

Property 1:If every element of a row (or a column) of a determinant is 

zero, then the determinant vanishes. 
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Proof:  

   = |
   
      

      

| 

 =  |
    

    
|   |

    

    
|   |

    

    
| 

 = 0. (          ) – 0 (          ) + 0 (          )   

 = 0 

Similarly, we can show that if all elements of any other row or column 

are zeros then the value of determinant will be zero. 

Property 2: The value of a determinant remains unaltered if rows 

and columns are interchanged. 

Proof: 

Let     = |

      

      

      

| 

 =   |
    

    
|    |

    

    
|    |

    

    
| 

 =    (          ) –    (          ) +    (          )   

 =                                        

        …(1) 

Now we will interchange the rows and columns of the determinant   and 

denote it as    

     = |

      

      

      

| 

Similarly, expanding the elements of    we get 

=   |
    

    
|    |

    

    
|    |

    

    
| 
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=    (          ) –    (          ) +    (          )  = 

                                                

 …(2) 

From (1) and (2) we find that   =    and hence the property is 

proved. 

 

Property 3: If two rows (or columns) of a determinant are interchanged 

then the value of the new determinant become (– 1) time the value of 

original determinant. 

Proof: 

 Let     = |
      

      

      

| 

Let    be the determinant that is obtained from    by interchanging the 

first row and the second row, we can write  

    = |

      

      

      

| 

Expanding    we get =                                

                …(1) 

Expanding    we get, 

=   |
    

    
|    |

    

    
|    |

    

    
| 

=    (          ) –    (          ) +    (          )   

=                                                   

Rearranging the terms 

=                                                   

=                                                    

 …(2) 

From (1) and (2) we can say that  
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Property 4: If two rows (or columns) of a determinant are identical , 

the value of the determinant is zero. 

Proof: 

Let      = |
      

      

      

| 

Here, first two rows of the above determinant are identical. 

Expanding the above determinant we get 

=   |
    

    
|    |

    

    
|    |

    

    
| 

=    (          ) –    (          ) +    (          )   

=                                                 …(1) 

Rearranging the above equation as  

 =                                                  

 = 0 + 0 + 0 

 = 0 

Property 5: If all elements of one row (or column) of a determinant be 

multiplied by the same constant number k(say) then the determinant 

itself is multiplied by that constant k. 

Proof: Let  

   = |
      

      

      

|  and      = |
         

      

      

| 

Here we need to show that     =    

Now, we will expand the determinant    

    =     |
    

    
|     |

    

    
|     |

    

    
| 

 = k    |
    

    
|    |

    

    
|    |

    

    
|  
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 = k [|
      

      

      

|  ] 

    = k   

4.4.1 Minors And Cofactors Of The Element Ofa 

Determinant: 
 

4.4.1.1 Minor: The minor of an element in a determinant is the 

determinant obtained by deleting the row and the column in which that 

element appears. 

Let us consider the example as: 

 

   = |

      

      

      

| 

Minor of    i.e. M11= |
    

    
| 

Minor of    M12= |
    

    
| 

Minor of    M13=  |
    

    
| 

Thus, in other words we can say that a minor of an element in a third 

order determinant is a second order determinant and the sign before it is 

always positive. 

4.4.1.2 COFACTOR: 

The cofactor of any element in a determinant is the minor of that element 

with + or – sign according to the formula  

Cij = (– 1 )
i + j

Mij 

Where Cijis the Cofactor of the element, 

i = denotes the number of row of that specific element which is 

considered. 

j = denotes the number of row of that specific element which is 

considered. 

Mij= minor of that considered element 



Notes 

71 

So, the cofactors of           in the above example are as follows, 

 

C11 =         |
    

    
| 

C12 =         |
    

    
| 

C13 =         |
    

    
| 

Also, if we expand the determinant    we get, 

  =   |
    

    
|    |

    

    
|    |

    

    
| 

   =    C11    C12     C13 

For quick working, the sign of the different cofactors are as follows: 

  |
   
   
   

| 

Example: Find the minor and cofactor of each element of the following 

determinant 

 |
    
    

     
| 

Solution: 

M11 = |
    

    
|  =  |

   
   

| =       = 14 

M12 = |
    

    
|=  |

  
    

| =     =  – 1  

M13 = |
    

    
|= |

  
   

| =      = 38 

Similarly, 

M21 =  |
   
   

|            M31 = |
   
   

|  
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M22 =  |
  

    
|              M32 = |

  
   

|  

          

  

M23 =  |
   

   
|            M33 = |

   
  

|  

          

Thus, Cofactors of the elements are  

C11 =         |
    

    
| =      |

   
   

|= 14 

C12 =         |
    

    
|=      |

  
    

|             

C13 =         |
    

    
|        |

  
   

|     

Similarly, 

C21 =            =               C31=           = 

           

C22 =            =               C32=           = 

              

C23 =            =                C33=            = 

             

Property 6:If every element of a row (or column) of a determinant is the 

sum of two terms then the determinant can be expressed as the sum of 

two determinants. 

Proof:  Let     = |
      

      

      

| 

and the cofactors of     ,    and    is C11, C12 and C13 respectively. 

Consider     = |

               

      

      

| 
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Now, the cofactors of      ,       and       is C11, C12 and C13 

respectively. 

Expand    determinant with respect to its cofactor we get following 

expression; 

    =         C11 + (      ) C12 +          C13 

=                                                       

                                                       

= |
      

      

      

|   + |

      

      

      

| 

Also, from the above theorem we can write, 

                                           

                     

                                         

                       

Property 7: If the elements of a certain row(or column) of a determinant 

are multiplied by the cofactors of the corresponding elements of another 

row(or column) then the sum of these product will be zero. 

Proof: Let     = |
      

      

      

| 

Now, we will multiply the element of first row by the cofactors of the 

corresponding elements of the second row, we get  

 

                            

    =          |
    

    
|           |

    

    
|           |

    

    
| 

                                                       

                                                 

= 0 
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Similarly, we can show that  

                                                       

 

Property 8: The value of a determinant remains unaltered if to all 

elements of any row (or column) are added the same multiples of the 

corresponding elements of any number of other rows (columns). 

Proof: We have to show that  

 

|

                              

      

      

|=  |

      

      

      

| 

 

With reference to property 6, we can expand LHS as follows 

= |
      

      

      

|   + |
         

      

      

|   + |
         

      

      

| 

= |
      

      

      

|   +m |
      

      

      

|   + n |
      

      

      

| 

 [Property 5] 

= |
      

      

      

|   + m. 0 + n. 0    

 [Property 4] 

= |
      

      

      

| 

= RHS 

Similarly, we can prove that  

|
              

              

              

|  =  |
      

      

      

| 
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Examples: 

1. Show that |
     
     
     

| = |
     
     
     

| 

Proof:    |
     
     
     

| 

Multiply first row bya , second by   and third row by  , we get 

 =  
 

   
|
       
       
       

| 

= 
   

   
|
     
     
     

| 

=  |
     
     
     

| 

= RHS 

2. Show that     |
       
       
       

|                 

 

Proof:     |
       
       
       

| 

Now we will perform the following operation on the above determinant 

         and         we get 

= |
        
        
        

| 

=          |
    
    
    

| 

Now,            and           
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=          |
       
       
    

| 

Expanding along the elements of the 1
st
 column 

=                                

=                                   

=                              

=              . 

= RHS 

3. Show that |
         

         
         

|           

Solution: Consider LHS =|
         

         
         

| 

           we get 

 

  |
               

         
         

| 

        |
   
         
         

| 

         and          

        |
   
           
           

| 

Expanding along the elements of the first row 

                 

=          
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4. Solve |
   
   
   

|    

Solution:  Perform          and          , we will get  

  |
   
       
       

| = 0 

                            

                        

                              

Assuming                   

         

     

4.5 CRAMER’S RULE: 
 

We will consider the example 

Example 1: Related to two variable 

Solve the following system by using determinants. 

 

{
          
         

 

 

To solve this system, three determinants are created. One is called the 

denominator determinant, labelled as D; another is the x‐numerator 

determinant, labelled D x; and the third is the y‐numerator determinant, 

labelled D y. 

 

The denominator determinant, D, is formed by taking the coefficients 

of x and y from the equations written in standard form. 

  |
   
   

|              
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The x‐numerator determinant is formed by taking the constant terms 

from the system and placing them in the x‐coefficient positions and 

retaining the y‐coefficients. 

 

   |
     
    

| 

                  

       

    

 

The y‐numerator determinant is formed by taking the constant terms 

from the system and placing them in the y‐coefficient positions and 

retaining the x‐coefficients. 

 

   |
    
   

| 

              

           

    

 

The answers for x and y is as follows:  

 

   
  

 
  

  

   
      

 

   
  

 
  

  

   
      

 

The solution is x = –5, y = –2. 

Finding solutions by using determinants is referred to as Cramer's Rule, 

named after the mathematician who devised this method. Cramer's Rule 

could hardly be considered a ―shortcut,‖ but it is a rather neat way to 

solve systems of equations by using determinants. 

For 3 variables 
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To use determinants to solve a system of three equations with three 

variables (Cramer's Rule), say x, y, and z, four determinants must be 

formed following this procedure: 

 

1. Write all equations in standard form. 

2. Create the denominator determinant, D, by using the coefficients 

of x, y, and z from the equations and evaluate it. 

3. Create the x‐numerator determinant, D x , the y‐numerator 

determinant, D y , and the z‐numerator determinant, D z , by 

replacing the respective x, y, and z coefficients with the constants 

from the equations in standard form and evaluate each 

determinant. 

 

The answers for x, y, and z are as follows:  

   
  

 
    

  

 
    

  

 
 

 

Example 2:Solve this system of equations, using Cramer's Rule. 

{
         
          
         

 

Find the minor determinants. 
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Use the constants to replace the x‐coefficients. 

 

 

 

    |
    
      
    

| 

 

  |
    
   

|    |
   
   

|   |
   

    
| 

 

                                 

 

                    

            

 

Use the constants to replace the y‐coefficients. 

 

 

 

    |
    
     
    

| 

 

  |
    
   

|   |
   
   

|   |
   
    

| 

 

                                      

 

                   

 

             

Use the constants to replace the z‐coefficients. 

Constants 

replacing the 

x-coefficient 

Constants 

replacing the 

y-coefficient 
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    |
   
     
   

| 

 

  |
    
  

|   |
  
  

|   |
  

    
| 

 

                            

 

                    

 

               

 

Therefore,  

   
  

 
 

  

  
      

  

 
 

   

  
           

  

 
 

   

  
    

 The solution is x = 1, y = –2, z = –3. 

[NOTE: If the denominator determinant, D, has a value of zero, then the 

system is either inconsistent or dependent.  

The system is dependent if all the determinants have a value of zero.  

The system is inconsistent if at least one of the determinants, Dx , Dy , 

or D z , has a value not equal to zero and the denominator determinant 

has a value of zero.] 

Example 3:Solve the following by Cramer‘s rule 

          

        

Now, we will find out the determinant D as 

Constants 

replacing the 

z-coefficient 
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D = |
   
  

| 

=             

      

      

We will find Dx and Dy as follows: 

   |    
   

| 

=             

      

    

   |
  
   

| 

=            

       

    

   
  

 
  

  

  
     

 

   
  

 
  

  

  
     

 

The solution is x = 4 and y = 1. 

 

Example 4: Solve the following equation by Cramer‘s Rule: 

          

           

           

Solution:  
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D = |
   
   
    

| 

=  |
  
   

|   |
  
   

|   |
  
  

| 

=                                           

                      

           

    

    |
   
   

     
| 

 

  |
  
   

|   |
  

    
|   |

  
   

| 

 

                                    

 

                     

              

 

    |
   
   
     

| 

 

  |
  

    
|   |

  
   

|   |
  
   

| 

 

                               

 

                      

 

              

 

    |
   
   
    

| 
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  |
  
   

|   |
  
   

|   |
  
  

| 

 

                         

 

                    

 

             

Therefore,  

   
  

 
 

  

  
      

  

 
 

  

  
          

  

 
 

  

  
   

 The solution is x = 1, y = 1, and z = 1. 

4.6 INVERSE OF A MATRIX USING 

DETERMINANT: 
 

We will consider the following example to understand the method of 

finding inverse using determinant. 

Example1: Find the inverse of a matrix A = [
   
   
   

] if it exist. 

Solution: Let us find the determinant of matrix A 

|A| =  [

         

         

         

] = [
   
   
   

] 

|A| = 1 |
  
  

|   |
  
  

|    |
  
  

| 

     = 1 (12 – 6) – 2(4 – 3) + 3 (2 – 3) 

     =  6 – 2 – 3  

     = 1   0      

which indicates the inverse of given matrix A exists. 
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Now let‘s find out the adjoint of a matrix A 

Calculate minor for each element of the given matrix A 

M11 = |
  
  

| = 6  M21 = |
  
  

| = 2  M31 = |
  
  

| 

=  3 

M12 = |
  
  

| = 1  M22 = |
  
  

| = 1  M32 = |
  
  

| 

= 0 

M13 = |
  
  

| =  1  M23 = |
  
  

| =    M33 = |
  
  

| 

= 1 

We have cofactor matrix as  

C =  [
          

           

          

] 

adj A = C
T 

=  [
          

           

          

] 

adj A = [
     

    
    

] 

  A
– 1 

=  
 

   
 adj A 

 = 
 

 
[

     
    
    

] 

A
– 1 

=  [
     

    
    

] 

Example 2: Find the inverse of a matrix A = [
   
   
   

] if it exist. 

Solution: Let us find the determinant of matrix A 

|A| =  [

         

         

         

] = [
   
   
   

] 
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|A| = 1 |
  
  

|   |
  
  

|    |
  
  

| 

     = 1 (24 – 0) – 2(0 – 5) + 3 (0 –4) 

     =  24 +10 – 12  

     = 22   0      

which indicates the inverse of given matrix A exists. 

Now let‘s find out the adjoint of a matrix A 

Calculate minor for each element of the given matrix A 

M11 = |
  
  

| = 24  M21 = |
  
  

| = 12  M31 = |
  
  

| 

=   

M12 = |
  
  

| =  5  M22 = |
  
  

| = 3  M32 = |
  
  

| 

= 5 

M13 = |
  
  

| =  4  M23 = |
  
  

| =     M33 = |
  
  

| 

= 4 

 

We have cofactor matrix as  

C =  [
          

           

          

] 

adj A = C
T 

=  [
          

           

          

] 

 

adj A = [
      
    

    
] 

 

  A
– 1 

=  
 

   
 adj A 
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A
– 1 

= 
 

  
[
      

    

    

] 

Check Your Progress 

1.  State property 8 with proof 

 

 

2.  State the steps to solve a system of three equations with three 

variables (Cramer's Rule) 

 

 

 

4.7 SUMMARY 
 

A matrix is often used to represent the coefficients in a system of linear 

equations, and the determinant can be used to solve those equations, 

although other methods of solution are much more computationally 

efficient. In linear algebra, a matrix (with entries in a field) is singular 

(not invertible) if and only if its determinant is zero. This leads to the use 

of determinants in defining the characteristic polynomial of a matrix, 

whose roots are the eigenvalues. In analytic geometry, determinants 

express the signed n-dimensional volumes of n-dimensional 

parallelepipeds. This leads to the use of determinants in calculus, 

the Jacobian determinant in the change of variables rule for integrals of 

functions of several variables. Determinants appear frequently in 

algebraic identities such as the Vandermonde identity. 

4.8 KEYWORDS 
 

1.Inverse - something that is the opposite or reverse of something else. 
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2. Coefficient  - In a mathematical equation, a coefficient is a constant by 

which a variable is multiplied. 

3. Replacing - a set of elements any one of which may be used to 

replace a given variable or placeholder in a mathematical sentence or 

expression 

4. Constant - a constant is a number on its own, or sometimes a letter 

such as a, b or c to stand for a fixed number. 

4.9 QUESTION FOR REVIEW 
 

1. Let A   Mn(C) be an upper triangular matrix with nonzero entries on 

the diagonal. Then, prove that A−1 is also an upper triangular matrix. 

2. Let  

 

 

 

where a, b . . . , l    . Without computing deduce that det(A) = det(B). 

3. Solve Ax = b using Cramer‘s rule, where  

 

 

 

4. Solve the following linear system by Cramer’s rule. 

i) x + y + z − w = 1, x + y − z + w = 2, 2x + y + z − w = 7, x + y + z + 

w = 3. 

ii) x − y + z − w = 1, x + y − z + w = 2, 2x + y − z − w = 7, x − y − z 

+ w = 3. 
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4. David S. Dummit and Richard M. Foote, Abstract Algebra (3e), John 

Wiley and Sons. 
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4.11 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Explain with example – 4.2 

2. Provide steps – .  4.3.1 

3. Provide statement and proof of property 8– 4.4 

4. Provide definition – 4.5 – Cramer‘s Rule for 3 variable 
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UNIT-5 VECTOR SPACES IN LINEAR 

TRANSFORMATION 
 

STRUCTURE 

5.0 Objective 

5.1 Introduction 

5.2 Vector Spaces: Definition 

5.3 Subspaces 

5.4 Linear Span 

5.5 Fundamental Subspaces Associated with a Matrix: 

5.6 Linear Independence 

5.7 Summary 

5.8 Keywords 

5.9 Questions for review 

5.10 Suggested readings 

5.11 Answers to check your progress 

5.0 OBJECTIVE 
 

Understand the concept of Vector subspaces and sub spaces 

Understand the Fundamental Subspaces Associated with a Matrix 

Comprehend Linear Independence 

5.1 INTRODUCTION 
 

In this chapter, we will mainly be concerned with finite dimensional 

vector spaces over or 
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 . Please note that the real and complex numbers have the property that 

any pair of elements can be added, subtracted or multiplied. Also, 

division is allowed by a nonzero element. Such 

sets in mathematics are called field. So,   and   are examples of field. 

The fields   and   have infinite number of elements. But, in 

mathematics, we do have fields that have only finitely many elements. 

For example, consider the set ℤ5
 = {0,1,2,3,4}. In Z5, we respectively, 

define addition and multiplication, as 

 

Then, we see that the elements of ℤ5
 can be added, subtracted and 

multiplied. Note that 4 behaves as −1 and 3 behaves as −2. Thus, 1 

behaves as −4 and 2 behaves as −3. Also, we see that in this 

multiplication 2 · 3 = 1 and 4 · 4 = 1. Hence, 

1. the division by 2 is similar to multiplying by 3, 

2. the division by 3 is similar to multiplying by 2, and 

3. the division by 4 is similar to multiplying by 4. 

Thus, ℤ5
 indeed behaves like a field. So, in this chapter,  will represent a 

field. 

 

5.2 VECTOR SPACES: DEFINITION  
 

Let A   M 

m,n(F) and let V denote the solution set of the homogeneous system Ax = 

0. Then,  by Theorem 2.1.9, V satisfies: 

1. 0   V as A0 = 0. 

2. if x   V then αx   V, for all α   F. In particular, for α = −1, −x   V. 

3. if x, y   V then, for any α, β   F, αx + βy   V. 

That is, the solution set of a homogeneous linear system satisfies some 

nice properties. The Euclidean plane, R2, and the Euclidean space, R3, 
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also satisfy the above properties. In this chapter, our aim is to understand 

sets that satisfy such properties. We start with the following definition. 

 

Definition 5.1.1. [Vector Space] A vector space V over F, denoted 

V(F) or in short V (if the field F is clear from the context), is a non-

empty set, satisfying the following conditions: 

 

1. Vector Addition: To every pair u, v   V there corresponds a unique 

element u ⊕ v   V (called the addition of vectors) such that 

 (a) u ⊕ v = v ⊕ u (Commutative law). 

 (b) (u ⊕ v) ⊕ w = u ⊕ (v ⊕ w) (Associative law). 

(c) V has a unique element, denoted 0, called the zero vector that 

satisfies u ⊕ 0 = u,  for every u   V (called the additive identity). 

 (d) For every u   V there is an element w   V that satisfies u ⊕ w = 0. 

 

2. Scalar Multiplication: For each u   V and α   F, there corresponds a 

unique element α  u in V (called the scalar multiplication) such that 

 

(a) α · (β  u) = (αβ)  u for every α, β   F and u   V (· is multiplication in 

F). 

 (b) 1  u = u for every u   V, where 1   F. 

 

3. Distributive Laws: relating vector addition with scalar 

multiplication 

For any α, β   F and u, v   V, the following distributive laws hold: 

 (a) α  (u ⊕ v) = (α  u) ⊕ (α  v). 

 (b) (α + β)  u = (α  u) ⊕ (β  u) (+ is addition in F). 

Remark 5.1.2. [Real / Complex Vector Space] 

1. The elements of F are called scalars. 

2. The elements of V are called vectors. 

3. We denote the zero element of F by 0, whereas the zero element of V 

will be denoted by 0. 

4. Observe that Condition 3.1.1.1d implies that for every u   V, the 

vector w   V such that u + w = 0 holds, is unique. For if, w1, w2   V 
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with u + wi = 0, for i = 1, 2 then by commutativity of vector addition, we 

see that 

w1 = w1 + 0 = w1 + (u + w2) = (w1 + u) + w2 = 0 + w2 = w2. 

Hence, we represent this unique vector by −u and call it the additive 

inverse. 

 

5. If V is a vector space over R then, V is called a real vector space. 

 

6. If V is a vector space over C then V is called a complex vector space. 

 

7. In general, a vector space over R or C is called a linear space. 

 

Some interesting consequences of Definition 5.1.1 is stated next.  

Theorem 5.1.3. Let V be a vector space over F. Then, 

1.   ⊕        implies v = 0. 

2.           if and only if either u = 0 or α = 0. 

3.               , for every u   V. 

 

Proof. Part 1: By Condition 5.1.1.1d, for each u   V there exists −u   V 

such that   ⊕       . Hence,   ⊕        is equivalent to 

 

   ⊕    ⊕          ⊕          ⊕     ⊕        

    ⊕               

 

Part 2: As       ⊕   , using Condition 5.1.1.3, we have 

 

                ⊕               ⊕          

Thus, using Part 1,          for any α   F. In the same way, using 

Condition 5.1.1.3b, 

 

                              ⊕          

Hence, using Part 1, one has 0  u = 0 for any u   V. 

Now suppose          . If α = 0 then the proof is over. Therefore, 

assume that α ≠ 0, α   F. 

Then, (α)−1   F and 
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as            for every vector u   V. Thus, if α ≠0 and α  u = 0 then u 

= 0. 

 

Part 3: As                             ⊕           one has 

               

5.3 SUBSPACES 
 

Definition 5.2.1. [Vector Subspace] Let V be a vector space over F. 

Then, a non-empty subset S of V is called a subspace of V if S is also a 

vector space with vector addition and scalar multiplication inherited from 

V. 

 

Theorem 5.2.2. Let V(F) be a vector space and W ⊆ V, W ≠ ∅. Then, W 

is a subspace of V if and only if αu + βv   W whenever α, β   F and u, v 

  W. 

Proof. Let W be a subspace of V and let u, v   W. Then, for every α, β   

F, αu, βv   W and hence αu + βv   W. 

 

Now, we assume that αu + βv   W, whenever α, β   F and u, v   W. To 

show, W is a subspace of V: 

1. Taking α = 1 and β = 1, we see that u + v   W, for every u, v   W. 

2. Taking α = 0 and β = 0, we see that 0   W. 

3. Taking β = 0, we see that αu   W, for every α   F and u   W. Hence, 

using Theorem 3.1.3.3, −u = (−1)u   Was well. 

4. The commutative and associative laws of vector addition hold as they 

hold in V. 

5. The conditions related with scalar multiplication and the distributive 

laws also hold as 

they hold in V. 

Check Your Progress 

1.  Define Vector addition and state its properties 
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2.  Explain vector subspace and state relevant theorem 

 

 

 

5.4 LINEAR SPAN 
 

Definition 5.3.1 [Linear Combination] Let V be a vector space over F. 

Then, for any 

u1, . . . , un   V and α1, . . . , αn   F, the vector α1u1 + · · · + αnun = 

∑     
 
    is said to be a 

linear combination of the vectors u1, . . . , un. 

Example 1. (3, 4, 3) is a linear combination of (1, 1, 1) and (1, 2, 1) as  

(3, 4, 3) = 2(1, 1, 1) + (1, 2, 1). 

 

2. (3, 4, 5) is not a linear combination of (1, 1, 1) and (1, 2, 1) as the 

linear system  

(3, 4, 5) = a(1, 1, 1) + b(1, 2, 1), in the variables a and b has no solution. 

Definition 5.3.2. [Linear Span] Let V be a vector space over F and S ⊆ 

V. Then, the 

linear span of S, denoted LS(S), is defined as 

LS(S) = {α1u1 + · · · + αnun | αi    F, ui   S, for 1 ≤ i ≤ n}. 

That is, LS(S) is the set of all possible linear combinations of finitely 

many vectors of S. If S 

is an empty set, we define LS(S) = {0}. 

 

Example: For the set S given below, determine LS(S). 

1. S = {(1, 0)
T
 , (0, 1)

T
} ⊆    2

. 

 

Solution: LS(S) = {a(1, 0)
T
 + b(0, 1)

T
 | a, b     } = {(a, b)

T
 | a, b    } = 

 2
. 
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2. S = {(1, 1, 1)
T
 , (2, 1, 3)

T
}. What does LS(S) represent in  3

? 

 

Solution: LS(S) = {a(1, 1, 1)
T
 + b(2, 1, 3)

T
 | a, b    } = {(a + 2b, a + b, 

a + 3b)
T
 | a, b    }.  

 

Note that LS(S) represents a plane passing through the points (0, 0, 0)
T
 , 

(1, 1, 1)
T
and (2, 1, 3)

T
 . To get the equation of the plane, we proceed as 

follows: 

Find conditions on x, y and z such that (a + 2b, a + b, a + 3b) = (x, y, z). 

Or equivalently, find conditions on x, y and z such that a + 2b = x, a + b 

= y and a + 3b = z has a solution for all a, b   R. The RREF of the 

augmented matrix equals 

 

 

 

Thus, the required condition on x, y and z is given by z + y − 2x = 0.  

Hence 

3. S = {(1, 2, 1)
T 

, (1, 0, −1)
T
 , (1, 1, 0)

T
}. What does LS(S) represent? 

 

Solution: As above, LS(S) is a plane passing through the given points 

and (0, 0, 0)
T
 . To get the equation of the plane, we need to find 

condition(s) on x, y, z such that the linear system 

a (1, 2, 1) + b(1, 0, −1) + c(1, 1, 0) = (x, y, z)    (A) 

in the variables a, b, c is always consistent. An application of GJE to 

Equation (A) gives 

 

 

 

 

Thus, LS(S) = {(x, y, z)
T
    3

 | x − y + z = 0}. 

 

4. S = {1 + 2x + 3x2, 1 + x + 2x2, 1 + 2x + x3}. 
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Solution: To understand LS(S), we need to find condition(s) on α, β, γ, δ 

such that the linear system 

                                                  

                     

 

in the variables a, b, c is always consistent. An application of GJE 

method gives α + β − γ − 3δ = 0 as the required condition. Thus, 

LS(S) = {α + βx + γx
2
 + δx

3
    [x] | α + β − γ − 3δ = 0}. 

 

5.  

 

 

 

Solution: To get the equation, we need to find conditions of aij‘s such 

that the system 

 

 

 

 

 

in the variables α, β, γ is always consistent. Now, verify that the required 

condition equals 

Definition 5.3.3. [Finite Dimensional Vector Space] Let V be a vector 

space over F. Then, V is called finite dimensional if there exists S ⊆ V, 

such that S has finite number of elements and V = LS(S). If such an S 

does not exist then V is called infinite dimensional. 

 

Example. 1. {(1, 2)T , (2, 1)T} spans R2. Thus,  2
 is finite dimensional. 

 

2. {1, 1 + x, 1 − x + x2, x3, x4, x5} spans C[x; 5]. Thus, C[x; 5] is finite 

dimensional. 
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Lemma 5.3.4 (Linear Span is a Subspace). Let V be a vector space over 

F and S ⊆ V. Then, 

LS(S) is a subspace of V. 

Proof. By definition, 0    LS(S). So, LS(S) is non-empty. Let u, v   

LS(S). To show, au + bv   LS(S) for all a, b    F. As u, v   LS(S), there 

exist n    N, vectors wi   S and scalars αi, βi   F such that u = α1w1 + · · 

· + αnwn and v = β1w1 + · · · + βnwn. Hence, 

   au + bv = (aα1 + bβ1)w1 + · · · + (aαn + bβn)wn   LS(S) 

 

as aαi + bβi    F for 1 ≤ i ≤ n. Thus, by LS(S) is a vector subspace 

 

Theorem 5.3.5 Let V be a vector space over F and S ⊆ V. Then, LS(S) is 

the smallest 

subspace of V containing S. 

Proof. For every u   S, u = 1 · u   LS(S). Thus, S ⊆ LS(S). Need to show 

that LS(S) is the 

smallest subspace of V containing S. So, let W be any subspace of V 

containing S. Then, by 

Exercise 3.1.20, LS(S) ⊆ W and hence the result follows. 

 

Definition 5.3.6. [Sum of two subsets] Let V be a vector space over F. 

1. Let S and T be two subsets of V. Then, the sum of S and T , denoted S 

+ T equals {s + t|s   S, t   T }. For example, 

 

(a) if V = R, S = {0, 1, 2, 3, 4, 5, 6} and T = {5, 10, 15} then S + T = {5, 

6, . . . , 21}. 

 

 

2. Let P and Q be two subspaces of R2. Then, P + Q = R2, if 
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(a) P = {(x, 0)T | x   R} and Q = {(0, x)T | x   R} as (x, y) = (x, 0) + (0, 

y). 

(b) P = {(x, 0)T | x   R} and Q = {(x, x)T | x   R} as (x, y) = (x − y, 0) + 

(y, y). 

(c) P = LS((1, 2)T ) and Q = LS((2, 1)T ) as  

Lemma 5.3.7. Let P and Q be two subspaces of a vector space V over F. 

Then, P + Q is a subspace of V. Furthermore, P + Q is the smallest 

subspace of V containing both P and Q. 

 

5.5 FUNDAMENTAL SUBSPACES 

ASSOCIATED WITH A MATRIX: 
 

Definition 5.4.1. [Fundamental Subspaces] Let A    M m,n( ). Then, 

we define the four fundamental subspaces associated with A as 

1. Col(A) = {Ax | x    n
} ⊆  m

, called the Column space. Observe that 

Col (A) is the linear span of the columns of A. 

2. Row(A) = {x
T
 A | x    m

}, called the row space of A. Observe that 

Row(A) is the linear span of the rows of A. 

3. Null(A) = {x    n | Ax = 0}, called the Null space of A. 

4. Null(A*) = {x   Cm | A*x = 0}. 

 

Remark 5.4.2. Let A   M m,n( ). 

1. Then, Col(A) is a subspace of C
m
 and Col(A*) is a subspace of Cn. 

2. Then, Null(A) is a subspace of C
n
 and Null(A*) is a subspace of Cm. 

 

5.6 LINEAR INDEPENDENCE 

Definition 5.5.1. Linear Independence and 

Dependence 
Let S = {u1, . . um} be a 

non-empty subset of a vector space   over  . Then, S is said to be 

linearly independent if 

the linear system 

α1u1 + α2u2 + · · · + αmum = 0   (A) 
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in the variables αi‘s, 1 ≤ i ≤ m, has only the trivial solution. If Equation 

(A) has a non-trivial solution then S is said to be linearly dependent. 

 

If S has infinitely many vectors then S is said to be linearly independent 

if for every finite subset T of S, T is linearly independent. 

Observe that we are solving a linear system over  . Hence, linear 

independence and dependence depend on  , the set of scalars. 

 

Example 1. Is the set S a linear independent set? Give reasons. 

 

(a) Let S = {1 + 2x + x2, 2 + x + 4x2, 3 + 3x + 5x2} ⊆ R[x; 2]. 

 

Solution: Consider the system 

 

 

 

 

or equivalently a (1 + 2x + x
2
) + b(2 + x + 4x

2
) + c(3 + 3x + 5x

2
) = 0, in 

the variables a, b and c.  

As two polynomials are equal if and only if their coefficients are equal, 

the above system reduces to the homogeneous system  

  a + 2b + 3c = 0, 2a + b + 3c = 0, a + 4b + 5c = 0.  

The corresponding coefficient matrix has rank 2 < 3, the number of 

variables. Hence, the system has a non-trivial solution. Thus, S is a 

linearly dependent subset of  [x; 2]. 

(b) S = {1, sin(x), cos(x)} is a linearly independent subset of C([−π, π], 

R) over R as the system  

(B) 

in the variables a, b and c has only the trivial solution. To verify this, 

evaluate Equation (3.3.2) at –π/2, 0 and π/2 to get the homogeneous 
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system a − b = 0, a + c =0, a + b = 0. Clearly, this system has only the 

trivial solution. 

(c) Let S = {(0, 1, 1)T , (1, 1, 0)T , (1, 0, 1)T }. 

Solution: Consider the system 

 

 

 

 

variables a, b and c. As rank of coefficient matrix is 3 = the number of 

variables, the system has only the trivial solution. Hence, S is a linearly 

independent subset of  3
. 

 

(d) Consider C as a complex vector space and let S = {1, i}. 

Solution: Since C is a complex vector space, i · 1 + (−1)i = i − i = 0. So, 

S is a linear dependent subset of the complex vector space C. 

 

(e) Consider C as a real vector space and let S = {1, i}. 

Solution: Consider the linear system a · 1 + b · i = 0, in the variables a, b 

   . Since a, b    , equating real and imaginary parts, we get a = b = 0. 

So, S is a linear independent subset of the real vector space C. 

 

5.5.2 Basic Results on Linear Independence: 
Proposition 5.5.2.1. Let V be a vector space over F. 

1. Then, 0, the zero-vector, cannot belong to a linearly independent set. 

2. Then, every subset of a linearly independent set in V is also linearly 

independent. 

3. Then, a set containing a linearly dependent set of V is also linearly 

dependent. 

Proof. Let 0   S. Then, 1 · 0 = 0. That is, a non-trivial linear 

combination of some vectors in S is 0. Thus, the set S is linearly 

dependent. 

 

Proposition 5.5.2.2. Let S be a linearly independent subset of a vector 

space   over  . If T1 
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, T2 are two subsets of S such that T1 ∩ T2 = ∅ then, LS(T1) ∩ LS(T2) = 

{0}. That is, if v   LS(T1) ∩ LS(T2) then v = 0. 

 

Proof. Let v   LS (T1)∩LS(T2). Then, there exist vectors u1, . . . , uk   

T1, w1, . . . , wl   T2 and scalars αi‘s and βj‘s (not all zero) such that  

  ∑     
 
    and   ∑     

 
   . Thus, we see that          

 

 

 

As the scalars αi‘s and βj‘s are not all zero, we see that a non-trivial 

linear combination of some vectors in T1 ∪ T2 ⊆ S is 0. This contradicts 

the assumption that S is a linearly independent subset of V. Hence, each 

of α‘s and βj‘s is zero. That is v = 0. 

 

Theorem 5.5.2.3. Let S = {u1, . . . , uk} be a non-empty subset of a vector 

space   over  . If 

T ⊆ LS(S) having more than k vectors then,T is a linearly dependent 

subset in  . 

Proof. Let T = {w1, . . . , wm}. As wi   LS(S), there exist aij   F such that 

wi = ai1u1 + · · · + aikuk, for 1 ≤ i ≤ m. 

 

As m > k, the linear system xT A = 0T has a non-trivial solution, sayY ≠ 

0
T
 . That is, Y

T
 A = 0

T
 . Thus, 

As Y ≠ 0, a non-trivial linear combination of vectors in T is 0. Thus, the 

set T is linearly dependent subset of V. 
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Corollary 5.5.2.4. Fix n     . Then, any subset S of Rn with | S | ≥ n+1 

is linearly dependent. 

 

Proof. Observe that Rn = LS({e1, . . . , en}), where ei = In[:, i], is the i-th 

column of In. Hence, 

using Theorem 3.3.5, the required result follows. 

Theorem 5.5.2.5. Let S be a linearly independent subset of a vector 

space   over  . Then, for 

any v      the set S ∪ {v} is linearly dependent if and only if v   LS(S).  

 

Proof. Let us assume that S ∪ {v} is linearly dependent. Then, there 

exist vi‘s in S such that 

the linear system 

 

α1v1 + · · · + αpvp + αp+1v = 0     (C) 

 

in the variables αi‘s has a non-trivial solution, say αi = ci, for 1 ≤ i ≤ p + 

1. We claim that cp+1 ≠ 0. For, if cp+1 = 0 then, Equation (C) has a non-

trivial solution corresponds to having a non-trivial solution of the linear 

system α1v1 + · · · + αpvp = 0 in the variables α1, . . . , αp. This contradicts 

Proposition 5.5.2.1 (2) as {v1, . . . , vp} ⊆ S, a linearly independent set. 

Thus, cp+1 ≠ 0 and we get 

 

 

 

as −  
  

    
   , for 1 ≤ i ≤ p. That is, v is a linear combination of v1, . . . , 

vp. Now, assume that v    LS(S). Then, there exists vi   S and ci   F, not 

all zero, such that 

  ∑     
 
   Thus, the linear system α1v1 + · · · + αpvp + αp+1 v = 0 in the 

variables αi‘s has a 

non-trivial solution [c1, . . . , cp, −1]. Hence, S ∪ {v} is linearly 

dependent. 

[We now state a very important corollary of above Theorem without 

proof. This result can also be used as an alternative definition of linear 

independence and dependence.] 
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Corollary 5.5.2.6. Let   be a vector space over   and let S be a subset of 

  containing a non-zero vector u1. 

1. If S is linearly dependent then, there exists k such that LS (u1, . . . , uk) 

= LS(u1, . . . , uk−1). 

2. If S linearly independent then, v   V \ LS(S) if and only if S ∪ {v} is 

also a linearly independent subset of V. 

3. If S is linearly independent then, LS(S) = V if and only if each proper 

superset of S is 

linearly dependent. 

Check Your Progress 

4. Explain Finite Dimensional Vector Space 

 

 

5. Define Linear Independence and Dependence 

 

 

5.7 SUMMARY 
 

This unit deals with all basic concept required to build the clear 

understanding of vector spaces. Even we got clear understanding of 

Vector subspace and linear Dependence. 

5.8 KEYWORDS 
 

Proper superset – A proper superset of a set A is a superset of A that is 

not equal to A. In other words, if B is a proper superset of A, then all 

elements of A are in B but B contains at least one element that is not in 

A. 

Corresponds – When two things correspond, they match up or are 

equivalent to one another. 
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Assumption -- An assumption is something that you assume to be the 

case, even without proof.  

5.9 QUESTIONS FOR REVIEW 
 

1. Does the set V given below form a real/complex or both real and 

complex vector space? 

Give reasons for your answer. 

Let V = R with x ⊕ y = x − y and α  x = −αx, for all x, y   V and α   R 

2. Determine all the subspaces of   and  2
. 

3. Let A = [B C]. Then, determine the condition under which Col(A) = 

Col(C). 

4. Prove that a line in    is a subspace if and only if it passes through (0, 

0)      

5. Find condition(s) on x, y, z     such that (x, y, z) is a linear 

combination of (1, 2, 3), (−1, 1, 4) and (3, 3, 2). 
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5.11ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition and properties – 5.1.1 

2. Provide definition, theorem and proof – 5.2.1 & 5.2.2 

3. Provide definition - 5.3.3.  

4. Provide definition of 5.5.1 
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UNIT-6 VECTOR SPACE IN LINEAR 

TRANSFORMATION II 
 

STRUCTURE 

6.0 Objective 

6.1 Introduction 

6.2 Application To Matrices 

6.3 Basis Of Vector Space 

6.4 Main Results Associated With Vector Space 

6.5Application To the Subspaces Of  n 

6.6 Ordered Bases- Change Of Basis Matrix 

6.7 Summary 

6.8 Keywords 

6.9 Questions for review 

6.10 Suggested Readings 

6.11 Answers To Check Your Progress 

6.0 OBJECTIVE 
 

Understand the concept of basis and its important results associated with 

vector space. 

Understand its application to the sub spaces 

Enumerate the concept of ordered bases 

6.1 INTRODUCTION 
 

 In this section, we will study results that are intrinsic to the 

understanding of linear algebra from the point of view of matrices, 

especially the fundamental subspaces associated with matrices. 
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6.2 APPLICATION TO MATRICES 
 

Theorem 6.1.1. Let A   Mm,n( ). Then, the rows of A corresponding to 

the pivotal rows of RREF (A) are linearly independent. Also, the 

columns of A corresponding to the pivotal columns of RREF (A) are 

linearly independent. 

 

Proof. Let RREF (A) = B. Then, the pivotal rows of Bare linearly 

independent due to the pivotal 1‘s. Now, let B1 be the submatrix of B 

consisting of the pivotal rows of B. Also, let A1 be the submatrix of A 

whose rows corresponds to the rows of B1. As the RREF of a matrix is 

unique there exists an invertible matrix Q such that QA1 = B1. So, if there 

exists c ≠ 0 such that c
T
 A1 = 0

T
 then 0

T
 = c

T
 A1 = c

T 
(Q

−1
 B1) = (cT 

Q
−1

)B1 = d
T
 B1,with d

T
 = c

T
 Q

−1
 ≠ 0

T
 as Q is an invertible matrix . This 

contradicts the linear independence of the rows of B1. 

 

Let B[:, i1], . . . , B[:, ir] be the pivotal columns of B. Then, they are 

linearly independent due to pivotal 1‘s. As B = RREF(A), there exists an 

invertible matrix P such that B = PA. 

Then, the corresponding columns of A satisfy 

 

[A[:, i1], . . . , A[:, ir]] = [P 
−1

 B[:, i1], . . . , P 
−1

 B[:, ir]] = P 
−1

[B[:, i1], . . . 

, B[:, ir]]. 

As P is invertible, the systems 

are row-equivalent. Thus, they have the same solution set. Hence, {A[:, 

i1], . . . , A[:, ir]} is linearly independent if and only if {B[:, i1], . . . , B[:, 

ir]} is linear independent. Thus, the required result follows. 

The next result follows directly from Theorem 6.6.1and hence the proof 

is left to readers. 

Corollary 6.1.2 The following statements are equivalent for A   Mn( ). 

1. A is invertible. 
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2. The columns of A are linearly independent. 

3. The rows of A are linearly independent. 

Linear Independence and Uniqueness of Linear Combination 

 

Lemma 6.1.3. Let S be a linearly independent subset of a vector space   

over  . Then, each v   LS(S) is a unique linear combination of vectors 

from S. 

 

Proof. Suppose there exists v   LS(S) with v   LS(T1), LS(T2) with T1, T2 

⊆ S. Let T1 = {v1, . . . , vk} and T2 = {w1, . . . , wl}, for some vi‘s and wj‘s 

in S. Define T = T1 ∪ T2. Then, T is a subset of S. Hence the set T is 

linearly independent. Let T = {u1, . . . , up}. Then, there exist αi‘s and βj‘s 

in F, not all zero, such that v = α1u1 + · · · + αpup as well as v = β1u1 + · · · 

+ βpup.  

Equating the two expressions for v gives 

(α1 − β1)u1 + · · · + (αp − βp)up = 0.     (A) 

 

As T is a linearly independent subset of V, the system c1v1 + · · · + cpvp = 

0, in the variables c1, . . . , cp, has only the trivial solution. Thus, in 

Equation (A), αi − βi = 0, for 1 ≤ i ≤ p. Thus, for 1 ≤ i ≤ p, αi = βi and the 

required result follows. 

 

6.3 BASIS OF A VECTOR SPACE 
 

Definition 6.2.1. [Maximality] Let S be a subset of a set T. Then, S is 

said to be a maximal subset of T having property P if 

1. S has property P and 

2. no proper superset of S in T has property P . 

 

Example: Let T = {2, 3, 4, 7, 8, 10, 12, 13, 14, 15}. Then, a maximal 

subset of T of consecutive integers is S = {2, 3, 4}. Other maximal 

subsets are {7, 8}, {10} and {12, 13, 14, 15}.  Note that {12, 13} is not 

maximal.  

Definition 6.2.2. [Maximal linearly independent set] Let   be a vector 

space over  . Then, 



Notes 

110 

S is called a maximal linearly independent subset of V if 

1. S is linearly independent and 

2. no proper superset of S in   is linearly independent. 

 

Example. 1. In  3
, the set S = {e1, e2} is linearly independent but not 

maximal as S ∪ {(1, 1, 1)
T
 } is a linearly independent set containing S. 

 

2. In  3
, S = {(1, 0, 0)T , (1, 1, 0)T , (1, 1, −1)T } is a maximal linearly 

independent set as S is 

linearly independent and any collection of 4 or more vectors from R3 is 

linearly dependent. 

 

3. Let S = {v1, . . . , vk} ⊆ Rn. Now, form the matrix A = [v1, . . . , vk] and 

let B = RREF(A).  

 

Then, using Theorem 6.1.1  we see that if B[:, i1], . . . , B[:, ir] are the 

pivotal columns of B then {vi1, . . . , vir} is a maximal linearly 

independent subset of S. 

Theorem 6.2.3. Let   be a vector space over   and S a linearly 

independent set in  . Then, 

S is maximal linearly independent if and only if LS(S) =  . 

 

Proof. Let v    . As S is linearly independent, using Corollary 3.3.8.2, 

the set S ∪ {v} is 

linearly independent if and only if v     \ LS(S). Thus, the required 

result follows. Let   = LS(S) for some set S with | S | = k. If T ⊆   is 

linearly independent then | T | ≤ k. Hence, a maximal linearly 

independent subset of   can have at most k vectors. Thus, we arrive at 

the following important result. 

 

Theorem 6.2.4. Let   be a vector space over   and let S and T be two 

finite maximal linearly 

independent subsets of  . Then, | S | = | T |. 

 

Proof. By Theorem 6.2.3, S and T are maximal linearly independent if 
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and only if LS(S) =   = LS(T ). Now, use the previous paragraph to get 

the required result. 

Let   be a finite dimensional vector space. Then, by Theorem 6.2.4, the 

number of vectors in any two maximal linearly independent set is the 

same.  

 

Definition 6.2.5. [Dimension of a finite dimensional vector space] Let 

V be a finite dimensional vector space over F. Then, the number of 

vectors in any maximal linearly independent set is called the dimension 

of  , denoted dim(V). By convention, dim({0}) = 0. 

 

Example. 1. As {1} is a maximal linearly independent subset of R, 

dim(R) = 1. 

2. As {e1, e2, e3} ⊆  3
 is maximal linearly independent, dim( 3

) = 3. 

3. As {e1, . . . , en} is a maximal linearly independent subset in  n
, 

dim( n
) = n. 

4. As {e1, . . . , en} is a maximal linearly independent subset in  n
 over  , 

dim( n
) = n. 

 

Definition 6.2.6: Let V be a vector space over  . Then, a maximal 

linearly independent subset of V is called a basis/Hamel basis of  . The 

vectors in a basis are called basis vectors. By convention, a basis of {0} 

is the empty set. 

Existence of Hamel basis 

 

Definition 6.2.7. [Minimal Spanning Set] Let   be a vector space over 

 . Then, a subset S of   is called minimal spanning if LS(S) =   and no 

proper subset of S spans  . 

 

Remark 6.2.8 (Standard Basis): 

1. All the maximal linearly independent set given in Example 3.4.8 form 

the standard basis 

of the respective vector space. 

2. {1, x, x
2
, . . .} is the standard basis of   [x] over  . 

3. Fix a positive integer n. Then, {1, x, x
2
, . . . , x

n
} is the standard basis 
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of   [x; n] over  . 

4. Let V = {A   Mn( ) | A = AT }. Then,  is a vector space over   with 

standard basis {Eii, Eij + Eji | 1 ≤ i < j ≤ n}. 

5. Let V = {A   Mn( ) | AT = −A}. Then,   is a vector space over   

with standard basis {Eij − Eji | 1 ≤ i < j ≤ n}. 

 

Example: 1. Note that {−2} is a basis and a minimal spanning subset in 

 . 

2. Let u1, u2, u3    2
. Then, {u1, u2, u3} can neither be a basis nor a 

minimal spanning subset of  2
. 

3. {(1, 1, −1)
T
 , (1, −1, 1)

T
 , (−1, 1, 1)

T 
} is a basis and a minimal 

spanning subset of  3
. 

4. Let V = {(x, y, 0)
T
 | x, y     } ⊆  3

. Then, B = {(1, 0, 0)
T
 , (1, 3, 0)

T
 } 

is a basis of V. 

5. Let V = {(x, y, z)
T
    3

 | x + y − z = 0} ⊆  3
. As each element (x, y, 

z)
T
   V satisfies x + y − z = 0. Or equivalently z = x + y, we see that (x, y, 

z) = (x, y, x + y) = (x, 0, x) + (0, y, y) = x(1, 0, 1) + y(0, 1, 1). Hence, {(1, 

0, 1)T , (0, 1, 1)T } forms a basis of V. 

 

6.4 MAIN RESULTS ASSOCIATED WITH 

BASES 
 

Theorem 6.3.1. Let   be a non-zero vector space over  . Then, the 

following statements are equivalent. 

1. B is a basis (maximal linearly independent subset) of  . 

2. B is linearly independent and spans  . 

3. B is a minimal spanning set in  . 

 

Proof. 1 ⇒ 2 By definition, every basis is a maximal linearly 

independent subset of  . Thus, using Corollary 5.5.2.6 (2), we see that B 

spans  . 

2 ⇒ 3 Let S be a linearly independent set that spans  . As S is linearly 

independent, for any x   S, x   / LS (S − {x}). Hence LS (S − {x}) $ 

LS(S) =  . 
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3 ⇒ 1 If B is linearly dependent then using Corollary 5.5.2.6 (1), B is not 

minimal spanning. A contradiction. Hence, B is linearly independent. 

We now need to show that B is a maximal linearly independent set. Since 

LS(B) =  , for any x      \ B, using Corollary 5.5.2.6 (2), the set B ∪ 

{x} is linearly dependent. That is, every proper superset of B is linearly 

dependent. Hence, the required result follows. 

Now, using Lemma 3.3.12, we get the following result. 

 

Remark 6.3.2. Let B be a basis of a vector space   over  . Then, for 

each v     , there exist unique ui   B and unique αi     , for 1 ≤ i ≤ n, 

such that v = ∑     
 
    

The next result is generally known as ―every linearly independent set can 

be extended to form a basis of a finite dimensional vector space‖. 

 

Theorem 6.3.3. Let V be a vector space over F with dim(V) = n. If S is a 

linearly independent subset of V then there exists a basis T of   such that 

S ⊆ T. 

Proof. If LS(S) = V, done. Else, choose u1     \ LS(S). Thus, by 

Corollary 3.3.8.2, the set 

S∪{u1} is linearly independent. We repeat this process till we get n 

vectors in T as dim( ) = n. 

By Theorem 3.4.13, this T is indeed a required basis. 

 

6.3.4 CONSTRUCTING A BASIS OF A FINITE DIMENSIONAL 

VECTOR SPACE 

Step 1: Let v1      with v1   0. Then, {v1} is linearly independent. 

Step 2: If V = LS(v1), we have got a basis of V. Else, pick v2     \ 

LS(v1). Then, by 

Corollary 5.5.2.6 (2), {v1, v2} is linearly independent. 

Step i: Either   = LS(v1, . . . , vi) or LS(v1, . . . , vi)    . In the first 

case, {v1, . . . , vi} is 

a basis of V. Else, pick vi+1     \ LS(v1, . . . , vi). Then, by Corollary 

5.5.2.6 (2), the set 

{v1, . . . , vi+1} is linearly independent. 

This process will finally end as V is a finite dimensional vector space. 
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Check your progress 

1.  Explain Dimension of a finite dimensional vector space 

 

 

2.  Explain the steps for constructing A Basis Of A Finite Dimensional 

Vector Space. 

 

 

 

 

6.5 APPLICATION TO THE SUBSPACES 

OF  N 
 

Example: 

 

Let  

 

 

 

Find a basis and dimension of Null(A). 

 

Solution: Writing the basic vairables x1, x3 and x6 in terms of the free 

variables x2, x4, x5 and x7, we get x1 = x7 − x2 − x4 − x5, x3 = 2x7 − 2x4 − 

3x5 and x6 = −x7. Hence, the solution set has the form 
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Now, let    
  = [−1, 1, 0, 0, 0, 0, 0],   

  = [−1, 0, −2, 1, 0, 0, 0],   
  = 

h−1, 0, −3, 0, 1, 0, 0i and   
  = [1, 0, 2, 0, 0, −1, 1]. Then, S = {u1, u2, 

u3, u4} is a basis of Null(A). The reasons for S to be a basis are as 

follows: 

(a) By Equation (3.5.1) Null(A) = LS(S). 

(b) For Linear independence, the homogeneous system c1u1 + c2u2 + 

c3u3 + c4u4 = 0 in 

the variables c1, c2, c3 and c4 has only the trivial solution as i. u4 is the 

only vector with a nonzero entry at the 7-th place (u4 corresponds to x7) 

and hence c4 = 0. 

ii. u3 is the only vector with a nonzero entry at the 5-th place (u3 

corresponds to x5) and hence c3 = 0. 

iii. Similar arguments hold for the variables c2 and c1. 

 

Lemma 6.4.1. Let A   Mm×n( ) and let E be an elementary matrix. If  

1. B = EA then 

(a) Null(A) = Null(B), Row(A) = Row(B). Thus, the dimensions of the 

corresponding spaces are equal. 

(b) Null ( ̅) = Null( ̅), Row( ̅) = Row( ̅). Thus, the dimensions of the 

corresponding spaces are equal. 

 

2. B = AE then 

(a) Null(A*) = Null(B*), Col(A) = Col(B). Thus, the dimensions of the 

corresponding spaces are equal. 

(b) Null(A
T
 ) = Null(B

T
 ), Col(A) = Col(B). Thus, the dimensions of the 

corresponding spaces are equal. 

 

Proof. Part 1a: Let x    Null(A). Then, Bx = EAx = E0 = 0. So, Null(A) 

⊆ Null(B). 

Further, if x   Null(B), then Ax = (E
−1

 E)Ax = E−1(EA)x = E
−1

 Bx = E
−1

 

0 = 0. Hence, Null(B) ⊆ Null(A). Thus, Null(A) = Null(B). 

 

Let us now prove Row(A) = Row(B). So, let xT   Row(A). Then, there 

exists y    m
 such that x

T
 = y

T
 A. Thus, x

T
 = y

T
 E

−1
 EA = y

T
 E

−1
 B and 
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hence xG   Row(B). That is, Row(A) ⊆ Row(B). A similar argument 

gives Row(B) ⊆ Row(A) and hence the required result follows. 

 

Part 1b: E is invertible implies E is invertible and B = EA. Thus, an 

argument similar to the previous part gives us the required result. 

For Part 2, note that B* = E*A* and E* is invertible. Hence, an argument 

similar to the first part gives the required result. 

 

Let A   Mm×n( ) and let B = RREF(A). Then, as an immediate 

application of Lemma 6.4.1, we get dim(Row(A)) = Row rank(A). We 

now prove that dim(Row(A)) = dim(Col(A)). 

 

Theorem 6.4.2. Let A   Mm×n(C). Then, dim(Row(A)) = dim(Col(A)). 

Proof. Let dim(Row(A)) = r. Then, there exist i1, . . . , ir such that {A[i1, 

:], . . . , A[ir, :]} forms a basis of Row(A) 

Then,  

 

 

 

 

is an r×n matrix and it‘s rows are a basis of Row(A). 

Therefore, there exist αij     , 1 ≤ i ≤ m, 1 ≤ j ≤ r such that A[t, :] = [αt1, . 

. . , αtr]B, for 1 ≤ t ≤ m. So, using matrix multiplication 

 

 

where C = [αij] is an m×r matrix. Thus, using matrix multiplication, we 

see that each column of A is a linear combination of r columns of C. 

Hence, dim(Col(A)) ≤ r = dim(Row(A)). A similar argument gives 

dim(Row(A)) ≤ dim(Col(A)). Hence, we have the required result. 

 

Remark 6.4.3  The proof also shows that for every A   Mm×n( ) of rank 

r there exists matrices B r×n and Cm×r, each of rank r, such that A = 
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CB. 

Let W1 and W1 be two subspaces of a vector space V over F. Then, 

recall that (see Exercise 3.1.24.4d) W1 + W2 = {u + v | u   W1, v   

W2} = LS(W1 ∪ W2) is the smallest subspace of V containing both W1 

and W2. We now state a result similar to a result in Venn diagram that 

states | A | + | B | = | A ∪ B | + | A ∩ B |, whenever the sets A and B are 

finite  

 

Theorem 6.4.4. Let V be a finite dimensional vector space over F. If W1 

and W2 are two subspaces of V then  

 dim(W1) + dim(W2) = dim(W1 + W2) + dim(W1 ∩ W2).   (A) 

 

For better understanding, we give an example for finite subsets of  n
. 

The example uses. 

Theorem 3.3.9 to obtain bases of LS(S), for different choices S. The 

readers are advised to see Example 3.3.9 before proceeding further. 

 

Example 6.4.5. Let V and W be two spaces with V = {(v, w, x, y, z)T   

R5 | v + x + z = 3y} 

and W = {(v, w, x, y, z)
T
    5

 | w − x = z, v = y}. Find bases of V and W 

containing a basis 

of V ∩ W. 

Solution: One can first find a basis of V ∩ W and then heuristically add 

a few vectors to get 

bases for V and W, separately 
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Thus, a required basis of V is {(1, 2, 0, 1, 2)
T
 , (0, 0, 1, 0, −1)

T 
, (0, 1, 0, 

0, 0)
T
 , (0, 0, 0, 1, 3)

T
 }. Similarly, a required basis of W is {(1, 2, 0, 1, 2)

T
 

, (0, 0, 1, 0, −1)
T
 , (0, 1, 0, 0, 1)

T 
}. 

 

Theorem 6.4.6 (Rank-Nullity Theorem). Let A   Mm×n(C). Then, 

 dim(Col(A)) + dim(Null(A)) = n.     (B) 

 

Proof. Let dim(Null(A)) = r ≤ n and let B = {u1, . . . , ur} be a basis of 

Null(A). Since B is a linearly independent set in  n
, extend it to get B = 

{u1, . . . , un} as a basis of Rn. Then, 

 Col(A) = LS(B) = LS(Au1, . . . , Aun)  

   = LS(0, . . . , 0, Aur+1, . . . , Aun) = LS(Aur+1, . . . , Aun). 

 

So, C = {Aur+1, . . . , Aun} spans Col(A). We further need to show that C 

is linearly independent. So, consider the linear system 

 

 α1Aur+1 + · · · + αn−r Aun = 0 ⇔ A(α1ur+1 + · · · + αn−r un) = 0   (C) 

 

in the variables α1, . . . , αn−r. Thus, α1u r+1 + · · · + αn−r un   Null(A) = 

LS(B). Therefore, there exist scalars βi, 1 ≤ i ≤ r, such that 

 

 

 

Or equivalently, 

  β1u1 + · · · + βrur − α1ur+1 − · · · − α n−r un = 0.    (D) 

 

As B is a linearly independent set, the only solution of Equation (D) is αi 

= 0, for 1 ≤ i ≤ n − r and βj = 0, for 1 ≤ j ≤ r. 

 

In other words, we have shown that the only solution of Equation (C) is 

the trivial solution. 

Hence, {Aur+1, . . . , Aun} is a basis of Col(A). Thus, the required result 

follows. Theorem 6.4.6 is part of what is known as the fundamental 

theorem of linear algebra. The following are some of the consequences 
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of the rank-nullity theorem. The proofs are left as an exercise for the 

reader. 

 

6.6 ORDERED BASES 
 

Let   be a vector space over   with dim(V) = n, for some positive 

integer n. Also, let W be a subspace of   with dim(W) = k. Then, a basis 

of   may not look like a standard basis. Our problem may force us to 

look for some other basis. In such a case, it is always helpful to fix 

the vectors in a particular order and then concentrate only on the 

coefficients of the vectors as was done for the system of linear equations 

where we didn‘t worry about the variables. It may also happen that k is 

very-very small as compared to n in which case it is better to work with k 

vectors in place of n vectors. 

 

Definition 6.5.1. [Ordered Basis, Basis Matrix] Let   be a vector 

space over   with a basis B = {u1, . . . , um}. Then, an ordered basis for 

  is a basis B together with a one-to-one 

correspondence between B and {1, 2, . . . , m}. Since there is an order 

among the elements of B, we write B = (u1, . . . , um). The vector B = 

[u1, . . . , um] is an element of  m
 and is generally called the basis 

matrix. 

Definition 6.5.2. [Coordinate Vector] Let B = [v1, . . . , vm] be the 

basis matrix corresponding to an ordered basis B of W. Since B is a basis 

of W, for each v    , there exist βi, 1 ≤ i ≤ m, 

such that  

  

 

 

 

 The vector [
  

 
  

], denoted [v]B, is called the coordinate vector of v 

with respect to B. Thus 
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(A) 

The last expression is generally viewed as a symbolic expression. 

 

Remark 6.5.3. [Basis representation of v] 

1. Let   be an ordered basis of a vector space   over   of dimension n. 

(a) Then, 

 [αv + w]B = α[v]B + [w]B, for all α   F and v, w    . 

 

(b) Further, let S = {w1, . . . , wm} ⊆  . Then, observe that S is linearly 

independent if and only if {[w1]B, . . . , [wm]B} is linearly independent in 

 n
. 

 

2. Suppose   =  n
. in Definition 6.5.2. Then, B = [v1, . . . , vn] is an n × 

n invertible matrix. Thus, using Equation (A), we have 

 

 B[v]B = v = (BB−1)v = B B−1v , for every v   V.   (B) 

 

As   is invertible, [v]B = B−1v, for every v   V. 

 

Definition 6.5.4 . [Change of Basis Matrix] Let V be a vector space 

over F with dim(V) = n. 

Let A = [v1, . . . , vn] and B = [u1, . . . , un] be basis matrices 

corresponding to the ordered bases A and B, respectively, of  . Thus, 

using Equation (A), we have 

 

 [v1, . . . , vn] = [B[v1]B, . . . , B[vn]
B
] = B [[v1]B, . . . , [vn]B] = B[A]B, 

 

where [A]B = [[v1]B, . . . , [vn]B]. Or equivalently, verify the symbolic 

equality 
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The matrix [A]B is called the matrix of A with respect to the ordered 

basis   or the change of basis matrix from   to  . 

 

Theorem 6.5.5 Let   be a vector space over with dim( ) = n. Further, 

let A = (v1, . . . , vn) and B = (u1, . . . , un) be two ordered bases of   

1. Then, the matrix [ ]B is invertible. 

2. Similarly, the matrix [ ]A is invertible. 

3. Moreover, [x]B = [A]B[x]A, for all x    . Thus, again note that the 

matrix [A]B takes coordinate vector of x with respect to A to the 

coordinate vector of x with respect to  . 

Hence, [A]B was called the change of basis matrix from A to B. 

4. Similarly, [x]A = [B]A[x]B, for all x   V. 

5. Furthermore, ([A]B)
−1

 = [B]A. 

Proof. Part 1: Note that using Equation (3.6.3), we have  

 

    

 

    (C) 

                                                                        

and hence the matrix [A]T B or equivalently [A]B is invertible, which 

proves Part 1. A similar argument gives Part 2. 

Part 3: Using Equations (A) and (3.6.3). for any x   V, we have 

 

 

 

 

 

Since the basis representation of an element is unique, we get [x]T B = 

[x]T A[A]T B. Or equivalently, 

[x]B = [A]B[x]A. This completes the proof of Part 3.  

 

Remark 6.5.6 . Let   be a vector space over   with A = (v1, . . . , vn) as 

an ordered basis. 

Then, by Theorem 3.6.7, [v]A is an element of Fn, for each v   V. 

Therefore, 
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1. if F =   then, the elements of V correspond to vectors in   . 

2. if F =   then, the elements of V correspond to vectors in    . 

 

Check your progress 

3.  What do you understand by basis matrix 

 

 

4.  Define Change of Basis 

 

 

6.7 SUMMARY 
 

We defined vector spaces over  . The set   was either   or  . To define 

a vector space, we start with a non-empty set   of vectors and   the set 

of scalars. We also needed to do the following: 

We then learnt linear combination of vectors and the linear span of 

vectors. It was also shown that the linear span of a subset S of a vector 

space   is the smallest subspace of V containing S. Then, we learnt 

linear independence and dependence. We then talked about the maximal 

linearly independent set (coming from the homogeneous system) and the 

minimal spanning set (coming from the non-homogeneous system) and 

culminating in the notion of the basis of a finite dimensional vector 

space   over  .  

6.8 KEYWORDS 
 

1. Representation -  a representation is a very general relationship that 

expresses similarities (or equivalences) between mathematical objects 

or structures. 

2. A matrix is a rectangular array of numbers or 

other mathematical objects for which operations such as addition and 

multiplication are defined. 
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3. Similar - having the same shape; having corresponding sides 

proportional and corresponding angles equal: related by means of a 

similarity transformation 

4. A variable is a quantity that may change within the context of 

a mathematical problem or experiment. 

 

6.9 QUESTION FOR REVIEW 
 

1.. Prove that S = {1, i, x, x + x
2
} is a linearly independent subset of the 

vector space C[x; 2] over R. Whereas, it is linearly dependent subset of 

the vector space C[x; 2] over C. 

 

2.Let   be a vector space of dimension n. Then, 

(a) prove that any set consisting of n linearly independent vectors forms a 

basis of  . 

(b) prove that if S is a subset of   having n vectors with LS(S) =   then, 

S forms a basis of  . 

 

3. Find a basis of  3
containing the vector (1, 1, −2)

T 
. 

 

4.  

 

 Find RREF(A) and RREF(B). 

 Find invertible matrices P1 and P2 such that P1A = RREF(A) and 

P2B = RREF(B). 

 Find bases for Col(A), Row(A), Col(B) and Row(B). 

 Find bases of Null(A), Null(A
T
 ), Null(B) and Null(B

T
 ). 

 Find the dimensions of all the vector subspaces so obtained. 
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5. Let V = {(v, w, x, y, z)T   R5 | w − x = z, v = y, v + x + z = 3y}. 

Then, verify that 

B = (1, 2, 0, 1, 2)T , (0, 0, 1, 0, −1)T  can be taken as an ordered basis of 

V. In this case, 

[(3, 6, 0, 3, 1)]B = "3 5#. 
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6.11 ANSWER TO CHECK YOUR 

PROGRESS 

 

1. Provide definition and example – 6.2.5 

2. Provide steps – 6.3.4 

3. Provide definition – 6.5.1 

4. Provide definition – 6.5.4 
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UNIT-7 LINEAR TRANSFORMATION 
 

STRUCTURE 

7.0 Objective 

7.1 Introduction 

7.2 Definition 

7.3 Range And Kernel Of A Linear Transformation 

7.4 Rank-Nullity Theorem 

7.5 Algebra Of Linear Transformations 

7.6 Summary 

7.7 Keywords 

7.8 Questions 

7.9 Suggested Readings 

7.10 Answers To Check Your Progress 

7.0 OBJECTIVE 
 

Understand the Concept of Linear Transformation 

Understand the Algebra of Linear Transformation 

Understand Rank Nullity Theorem 

7.1 NTRODUCTION 
 

A linear transformation is a function from one vector space to another 

that respects the underlying (linear) structure of each vector space. A 

linear transformation is also known as a linear operator or map. 

The range of the transformation may be the same as the domain, and 

when that happens, the transformation is known as an endomorphism or, 

if invertible, an automorphism. The two vector spaces must have the 

same underlying field. 
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Linear transformations are useful because they preserve the structure of a 

vector space. So, many qualitative assessments of a vector space that is 

the domain of a linear transformation may, under certain conditions, 

automatically hold in the image of the linear transformation. For 

instance, the structure immediately gives that the kernel and image are 

both subspaces (not just subsets) of the range of the linear 

transformation. 

Most linear functions can probably be seen as linear transformations in 

the proper setting. Transformations in the change of basis formulas are 

linear, and most geometric operations, including rotations, reflections, 

and contractions/dilations, are linear transformations. Even more 

powerfully, linear algebra techniques could apply to certain very non-

linear functions through either approximation by linear functions or 

reinterpretation as linear functions in unusual vector spaces. A 

comprehensive, grounded understanding of linear transformations 

reveals many connections between areas and objects of mathematics. 

 

7.2 DEFINITIONS AND BASIC 

PROPERTIES 

 

Definition 7.1.1. [Linear Transformation, Linear Operator] Let   

and   be vector spaces over  . A function (map) T :   → W is called a 

linear transformation if for all α     and u, v     the function T 

satisfies 

 T(α · u) = α  T(u) and T(u + v) = T(u) ⊕ T(v), 

 

where +, · are binary operations in   and ⊕,  are the binary operations in 

W. By L( ,  ), we denote the set of all linear transformations from   to 

 . In particular, if   =   then the linear transformation T is called a 

linear operator and the corresponding set of linear operators is 

denoted by   ( ). 

 

Definition 7.1.2. [Equality of Linear Transformation] Let S, T     ( , 
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 ). Then, S and T 

are said to be equal if S(x) = T(x), for all x    . 

We now give examples of linear transformations. 

 

Example: 1. Let   be a vector space. Then, the maps Id, 0    ( ), 

where 

(a) Id(v) = v, for all v    , is commonly called the identity operator. 

(b) 0(v) = 0, for all v    , is commonly called the zero operator. 

2. Let   and W be two vector spaces over F. Then, 0     ( ,  ), where 

0(v) = 0, for all v    , is commonly called the zero transformation. 

 

3. The map T(x) = x, for all x   R, is an element of L(R) as T(ax) = ax = 

aT(x) and  

 T(x + y) = x + y = T(x) + T(y). 

The map T (x) = (x, 3x)
T
 , for all x    , is an element of  ( ,  2

) as T 

(λx) = (λx, 3λx)
T
 = λ(x, 3x)

T
 = λ

T
 (x) and T (x + y) = (x + y, 3(x + y)

T 
= (x, 

3x)
T
 + (y, 3y)

T
 = T (x) + T (y). 

 

5. Let  ,   and ℤ be vector spaces over F. Then, for any T     ( ,  ) 

and S     ( , ℤ), the map S ◦ T     ( , ℤ), where (S ◦ T )(v) = ST (v), 

for all v    , is called the composition of maps. Observe that for each v 

   ,  

(S ◦ T )(αv + βu) = ST (αv + βu) = S (αT (v) + βT (u)) 

  = αS(T (v)) + βS(T (u)) = α(S ◦ T )(v) + β(S ◦ T )(u)  

and hence S ◦ T , in short ST , is an element of   ( , ℤ). 

 

6. Fix a    n
 and define T (x) = aT x, for all x    n

. Then T   L( n
,  ). 

For example, 

 (a) if a = (1, . . . , 1)
T
 then T (x) =   ∑   

 
     for all x    n

.  

 

(b) if a = ei, for a fixed i, 1 ≤ i ≤ n, then Ti(x) = xi, for all x    n
.  
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Remark 7.1.3. Let A   Mn( ) and define TA :  n
 →  n

 by TA(x) = Ax, 

for every x    n
. 

Then, verify that 

 

 

 

for any positive integer k. 

Also, for any two linear transformations S     ( ,  ) and T     ( , 

ℤ),we will interchangeably use T ◦ S and TS, for the corresponding linear 

transformation in   ( , ℤ), We now prove that any linear transformation 

sends the zero vector to a zero vector. 

 

Proposition 7.1.4. Let T     ( ,  ) Suppose that     is the zero vector 

in   and   .is the zero vector of W. Then T (  ) =   . 

 

Proof. Since    =   +   , we get 

 

 T (  ) = T (   +   ) = T (  ) + T (  ).  

 

As T (  )    , 

 

   . + T (  ) = T (  ) = T (  ) + T (  ). 

 

Hence, T (  ) =   . 

From now on 0 will be used as the zero vector of the domain and co-

domain. 

 

Example: Does there exist a linear transformation T :   →   such that T 

(x) = x
2
, for all x    ? 

 

Solution: No, as T (ax) = (ax)
2
 = a

2
x

2
 = a

2
T (x) ≠ aT (x), unless a = 0, 1. 

 Example:  Does there exist a linear transformation T :   →   such that 

T (x) =√ , for all x   R? 

Solution: No, as T (ax) = √   = √  √  ≠ a√  = aT (x), unless a = 0, 1. 
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The next result states that a linear transformation is known if we know its 

image on a basis of the domain space. 

 

Lemma 7.1.5  Let   and   be two vector spaces over F and let T   L(V, 

W). Then T is known, if the image of T on basis vectors of   are known. 

In particular, if   is finite dimensional and B = (v1, . . . , vn) is an 

ordered basis of   over F then, T (v) = hT (v1) · · · T (vn)i[v]B. 

Proof. Let B be a basis of   over F. Then, for each v    , there exist 

vectors u1, . . . , uk in B and scalars c1, . . . , ck   F such that v = 

∑     
 
   .Thus, by definition T (v) = ∑        

 
    Or equivalently, 

whenever 

 (A) 

 

 

 

Corollary 7.1.6. Let   and   be vector spaces over F and let T :   → 

  be a linear transformation. If B is a basis of   then, RNG(T ) = LS(T 

(x)|x   B). 

 

Corollary 7.1.7. [Reisz Representation Theorem] Let T   L( n
,  ). 

Then, there exists a    n
 such that T (x) = aT x. 

 

Proof. By Lemma 7.1.5, T is known if we know the image of T on {e1, . . 

. , en}, the standard basis of  n
. As T is given, for 1 ≤ i ≤ n, T (ei) = ai, for 

some ai     . So, consider the vector a = [a1, . . . , an]T . Then, for x = 

[x1, . . . , xn]T    n
, we see that 

 

Thus, the required result follows 

 

7.3 RANGE AND KERNEL OF A LINEAR 

TRANSFORMATION 
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Definition 7.2.1. [Range and Kernel of a Linear Transformation] Let 

  and   be vector spaces over   and let T :   →   be a linear 

transformation. Then, 

1. the set {T (v)|v   V} is called the range space of T , denoted Rng(T ). 

2. the set {v   V|T (v) = 0} is called the kernel of T , denoted Ker(T ). In 

certain books, it is also called the null space of T . 

 

Example. Determine Rng(T ) and Ker(T ) of the following linear 

transformations..             , where T ((x, y, z)
T
 ) = (x − y + z, y − z, 

x, 2x − 5y + 5z)
T
 . 

 

Solution: Consider the standard basis {e1, e2, e3} of   . Then 

and 

 

Example. In each of the examples given below, state whether a linear 

transformation exists or not. If yes, give at least one linear 

transformation. If not, then give the condition due to which a linear 

transformation doesn‘t exist. 

 

1. T :   →    such that T ((1, 1)
T 

) = (1, 2)
T
 and T ((1, −1)

T
 ) = (5, 10)

T 
? 

Solution: Yes, as the set {(1, 1), (1, −1)} is a basis of   , the matrix  
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Check your progress 

1.  Explain Linear Transformation and Linear Operator. 

  

 

2.  Define the concept of Range space and kernel of linear transformation 

 

 

 

7.4 RANK-NULLITY THEOREM 
 

Theorem 7.3.1. Let   and   be two vector spaces over   and let 

            

 

1. If S ⊆   is linearly dependent then T (S) = {T (v) | v     } is linearly 

dependent. 

2. Suppose S ⊆   such that T (S) is linearly independent then S is 

linearly independent. 

 

Proof. As S is linearly dependent, there exist k   N and vi   S, for 1 ≤ i ≤ 

k, such that the system ∑     
 
     , in the variable xi‘s, has a non-

trivial solution, say xi = ai   F, 1 ≤ i ≤ k. 

Thus, ∑     
 
     . Now, consider the system ∑       

 
      ,in the 

variable yi‘s. Then, 
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Thus, ai‘s give a non-trivial solution of ∑       
 
       and hence the 

required result follows. 

Definition 7.3.2. [Rank and Nullity] Let V and W be two vector spaces 

over F. If T   L(V, W) and dim(V) is finite then we define  

        Rank(T ) = dim(RNG (T )) and Nullity(T ) = dim(KER (T )). 

 

Theorem 7.3.3 (Rank-Nullity Theorem). Let V and W be two vector 

spaces over F. If dim(V) is finite and T   L(V, W) then, 

      Rank(T ) + Nullity(T ) = dim(RNG (T )) + dim(KER (T )) = dim( ). 

 

Proof. As dim(Ker(T )) ≤ dim( ). Let B be a basis of Ker(T ). We extend 

it to form a basis C of V. As, T (v) = 0, for all v   B, using Corollary 

7.1.6, we get 

 RNG(T ) = LS({T (v)|v   C}) = LS({T (v)|v   C \ B}). 

We claim that {T (v)|v   C \ B$ is linearly independent subset of W. 

 

Let, if possible, the claim be false. Then, there exists v1, . . . , vk   C\B 

and a = [a1, . . . , ak]T 

such that a ≠ and  ∑       
 
      . Thus, we see that 

 

 

 

 

That is, ∑     
 
     KER(T ). Hence, there exists b1, . . . , bl      and u1, 

. . . , ul     such that Or equivalently, the system 

 

 

 

 

 

 ,  
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in the variables xi‘s and yj‘s, has a non-trivial solution [a1, . . . , ak, −b1, . 

. . , −bl]T (non-trivial as a ≠ 0). Hence, S = {v1, . . . , vk, u1, . . . , u`} is 

linearly dependent subset in V. A contradiction to S ⊆ C. Thatis, dim 

(RNG (T )) + dim(KER (T )) = |C \ B| + |B| = |C| = dim( ). 

 

Thus, we have proved the required result. 

 

Corollary 7.3.4. Let   and   be vector spaces over   and let    

        If dim( ) = dim( ) then, the following statements are 

equivalent. 

1. T is one-one. 

2. KER (T ) = {0}. 

3. T is onto. 

4. dim(RNG (T )) = dim( ). 

 

Corollary 7.3.5. Let   be a vector space over F with dim( ) = n. If S, T 

  L( ). Then 

1. Nullity(T ) + Nullity(S) ≥ Nullity(ST ) ≥ max{Nullity(T ), Nullity(S)}. 

2. min{Rank(S), Rank(T )} ≥ Rank(ST ) ≥ n − Rank(S) − Rank(T ). 

 

Proof. The prove of Part 2 is omitted as it directly follows from Part 1 

and Theorem 7.3.3. Part 1: We first prove the second inequality. Suppose 

v    KER (T ). Then 

  (ST )(v) = S(T (v)) = S(0) = 0 

implies KER (T ) ⊆ KER (ST ). Thus, NULLITY (T ) ≤ NULLITY (ST ). 

By Theorem 7.3.3, NULLITY(S) ≤ NULLITY (ST ) is equivalent to RNG (ST 

) ⊆ RNG (S). And 

this holds as RNG (T ) ⊆  V implies RNG (ST ) = S(Rng(T )) ⊆ S(V) = 

Rng(S). 

To prove the first inequality, let {v1, . . . , vk} be a basis of KER (T ). 

Then {v1, . . . , vk} ⊆ 
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KER (ST ). So, let us extend it to get a basis {v1, . . . , vk, u1, . . . , ul} of 

KER (ST ). 

Claim: {T (u1), T (u2), . . . , T (u`)} is a linearly independent subset of 

KER (S). 

Clearly, {T (u1), . . . , T (u`)} ⊆  KER (S). Now, consider the system c1T 

(u1)+· · ·+clT (ul) = 0 

in the variables c1, . . . , cl. As           we get ( ∑     
 
   )= 0. Thus, 

∑     
 
      KER (T ). 

Hence, ∑     
 
    is a unique linear combination of v1, . . . , vk, a basis of 

KER (T ). Therefore, 

   c1u1 + · · · + clul = α1v1 + · · · + αkvk     (1) 

 

for some scalars α1, . . . , αk. But by assumption, {v1, . . . , vk, u1, . . . , ul} 

is a basis of KER (ST ) 

and hence linearly independent. Therefore, the only solution of Equation 

(1) is given by ci = 0, for 1 ≤ i ≤ ` and αj = 0, for 1 ≤ j ≤ k. Thus, we have 

proved the claim. Hence, 

 NULLITY (S) ≥ l and NULLITY ST ) = k + l ≤ NULLITY (T ) + NULLITY (S). 

 

7.5 ALGEBRA OF LINEAR 

TRANSFORMATIONS 
 

Definition 7.4.1 . [Sum and Scalar Multiplication of Linear 

Transformations]:  Let  ,   be 

vector spaces over F and let S,             Then, we define the point-

wise 

1. sum of S and T , denoted S + T , by (S + T )(v) = S(v) + T (v), for all v 

   . 

2. scalar multiplication, denoted cT for c    , by (cT )(v) = c (T (v)), 

for all v    . 

 

Theorem 7.4.2. Let   and   be vector spaces over F. Then         is 

a vector space over 

F. Furthermore, if dim   = n and dim   = m, then dim         = mn. 
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Proof. It can be easily verified that for S, T          , if we define (S 

+αT )(v) = S(v)+αT (v) 

(point-wise addition and scalar multiplication) then         is indeed a 

vector space over F. 

We now prove the other part. So, let us assume that B = {v1, . . . , vn} 

and C = {w1, . . . , wm} are bases of   and  , respectively. For 1 ≤ i ≤ n, 

1 ≤ j ≤ m, we define the functions fij on the basis vectors of   by 

 

 

 

 

For other vectors of V, we extend the definition by linearity. That is, if 

  ∑     
 
    then, 

(2) 

         

Thus, fij            

  

Claim: {fij|1 ≤ i  

≤ n, 1 ≤ j ≤ m} is a basis of          

So, consider the linear system  in the variables cij‘s, for 1 ≤ i ≤ n, 1 ≤ j  

 

≤ m. Using the point-wise addition and scalar multiplication, we get 

 

But, the set {w1, . . . , wm} is linearly independent and hence the only 

solution equals ckj = 0, for 1 ≤ j ≤ m. Now, as we vary vk from v1 to vn, 

we see that cij = 0, for 1 ≤ j ≤ m and 1 ≤ i ≤ n. Thus, we have proved the 

linear independence. 
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Now, let us prove that LS ({fij|1 ≤ i ≤ n, 1 ≤ j ≤ m}) =        . So, let f 

          

Then, for 1 ≤ s ≤ n, f(vs)     and hence there exists βst‘s such that f(vs) 

      ∑       
 
   . So, if   ∑     

 
         then, 

 

Since the above is true for every v    , LS ({fij|1 ≤ i ≤ n, 1 ≤ j ≤ m}) = 

        and thus the required result follows.  

 

Definition 7.4.3 [Inverse of a Function] Let f : S → T be any function. 

 

1. Then, a function g : T → S is called a left inverse off if (g ◦ f)(x) = x, 

for all x   S. 

That is, g ◦ f = Id, the identity function on S. 

2. Then, a function h : T → S is called a right inverse of f if (f ◦ h)(y) = 

y, for all y   T . 

That is, f ◦ h = Id, the identity function on T . 

3. Then f is said to be invertible if it has a right inverse and a left 

inverse. 

Remark 7.4.4. Let f : S → T be invertible. Then, it can be easily shown 

that any right inverse and any left inverse are the same. Thus, the inverse 

function is unique and is denoted by f 
−1

. It is well known that f is 

invertible if and only if f is both one-one and onto. 

 

Lemma 7.4.5. Let V and W be vector spaces over F and let T   

      . If T is one-one and onto then, the map T 
−1

 : W → V is also a 

linear transformation. The map T 
−1 

is called the inverse linear 

transform of T and is defined by T 
−1

(w) = v, whenever T (v) = w. 

 

Proof. Part 1: As T is one-one and onto, by Theorem 4.2.3, dim( ) = 

dim( ). So, by Corollary 7.3.4, for each w     there exists a unique v 

    such that T (v) = w. Thus, one defines T 
−1

(w) = v. We need to show 
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that T 
−1

(α1w1 + α2w2) = α1T 
−1

(w1) + α2T 
−1

(w2), for all α1, α2    

  and w1,w2    . Note that by previous paragraph, there exist unique 

vectors v1,v2     such that T 
−1

(w1) = v1 and T 
−1

(w2) = v2. Or 

equivalently, T (v1) = w1 and T (v2) = w2. So, T (α1v1 + α2v2) = α1w1 

+ α2w2, for all α1, α2     . Hence, for all α1, α2   F, we get  

 

T 
−1

(α1w1 + α2w2) = α1v1 + α2v2 = α1T 
−1

(w1) + α2T 
−1

(w2). 

Thus, the required result follows. 

 

Definition 7.4.6. [Singular, Non-singular Transformations] Let   and 

  be vector spaces over F and let T         . Then, T is said to be 

singular if 0 $ KER (T ). That is, KER (T ) contains a non-zero vector. If 

KER (T ) = {0} then, T is called non-singular. 

Theorem 7.4.7. Let V and W be vector spaces over F and let T   

      . Then the following statements are equivalent. 

1. T is one-one. 

2. T is non-singular. 

3. Whenever S ⊆   is linearly independent then T (S) is necessarily 

linearly independent. 

Proof. 1⇒ 2 Let T be singular. Then, there exists v ≠ 0 such that T (v) = 0 

= T (0). This implies that T is not one-one, a contradiction. 

2⇒ 3 Let S ⊆   be linearly independent. Let if possible T (S) be linearly 

dependent. Then, there exists v1, . . . , vk   S and α = (α1, . . . , αk)T ≠ 0 

such that  ∑      
 
    =0. Thus, T  ∑     

 
     = 0. But T is nonsingular 

and hence we get ∑     
 
    = 0 with α ≠ 0, a contradiction to S being a 

linearly independent set. 

 

3⇒1 Suppose that T is not one-one. Then, there exists x, y    such that x 

≠ y but T (x) = T (y). Thus, we have obtained S = {x − y}, a linearly 

independent subset of   with T (S) = {0}, a linearly dependent set. A 

contradiction to our assumption. Thus, the required result follows. 

 

Definition 7.4.8. [Isomorphism of Vector Spaces] Let   and   be two 

vector spaces over   and let T         Then, T is said to be an 

isomorphism if T is one-one and onto. The vector spaces   and W are 
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said to be isomorphic, denoted     , if there is an isomorphism from 

  to  . 

Theorem 7.4.9. Let V be an n-dimensional vector space over F. Then 

      

Proof. Let {v1, . . . , vn} be a basis of V and {e1, . . . , en}, the standard 

basis of   . Now define 

T (vi) = ei, for 1 ≤ i ≤ n and T  ∑     
 
     = ∑     

 
    for α1, . . . , αn   

 . Then, it is easy to 

observe that T          T is one-one and onto. Hence, T is an 

isomorphism. 

Corollary 7.4.10. The vector space   over   is not finite dimensional. 

Similarly, the vector 

space   over   is not finite dimensional. 

Theorem 7.4.11 Let V be a vector space over F with dim V = n. Then 

the following statements are equivalent for           

1. T is one-one. 

2. KER (T ) = {0}. 

3. Rank(T ) = n. 

4. T is onto. 

5. T is an isomorphism. 

6. If {v1, . . . , vn} is a basis for V then so is {T (v1), . . . , T (vn)}. 

7. T is non-singular. 

8. T is invertible. 

Check your progress 

3.  Explain inverse linear transform with lemma and proof. 

 

 

4.  Define 

a. Isomorphic Vector Space 

b. Singular and Non-Singular Transformation 
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7.6 SUMMARY 
 

We have shown that matrices give rise to functions between two finite 

dimensional vector spaces. To do so, we start with the definition of 

functions over vector spaces that commute with the operations of vector 

addition and scalar multiplication. 

7.7 KEYWORDS 
 

5. Invertible -- If y = f (x), then the inverse relation is written as y = f 
-

1
 (x). If the inverse is also a function, then we say that the function f 

is invertible 

6. Non-singular – whose solution is not zero 

7. Dimensional - Dimensions in mathematics are the measure of the 

size or distance of an object or region or space in one direction. In 

simpler terms, it is the measurement of the length, width, and height of 

anything.  

8. Equivalent - means equal in value, function, or meaning 

7.8 QUESTION FOR REVIEW 
 

1. Let V and W be two vector spaces over F and let T   L(V, W). If 

dim(V) is finite then prove that 

1. T cannot be onto if dim(V) < dim(W). 

2. T cannot be one-one if dim(V) > dim (W) 

2. Define T   L(R3, R2) by  

 

 

 

Find a basis and the dimension of RNG(T ) and KER(T ). 

3. Let T :  3
 →  3

 be defined by T ((x, y, z)
T
 ) = (2x − 2y + 2z, −2x + 5y 

+ 2z, 8x + y + 4z)
T
 . Find x    3

 such that T (x) = (1, 1, −1)
T
 . 
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4. Let n   N. Does there exist a linear transformation T :  3
 →  n

 such 

that T ((1, 1, −2)
T
 ) = 

x, T ((−1, 2, 3)
T
 ) = y and T ((1, 10, 1)T ) = z 

(a) with z = x + y? 

(b) with z = cx + dy, for some c, d    ? 
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7.10 ANSWERS TO CHECK YOUR 

PROGRESS 
1. Refer 7.1.1 

2. Refer 7.2 

3. Refer 7.4.5 

4. a – Refer 7.4.6 

b. Refer – 7.4.8 

 

      

 


